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Introduction



Starting point: classical discrete state Markov chains

Markov property:

The future state depends only on
the present state, not on the past
history.

P(Xnt1 =4 | Xa =1i,(Xk)k<n) = Pjj
Pij:P(Xn+1 :j’Xn:i), i,jexXx,

where |X| < Ng.

Example: X = {1,2 3}:

0.5 0.3 0.2
P=101 07 0.2
0.4 02 04



General state spaces Markov chains

State space: complete, separable metric space (X, dyxx), B(X)
refers to its Borel o-algebra.

Markov property:
P(Xnt1 € Al Xn = x, (Xk)k<n) = Q(x,A), x € X, A€ B(X),
where the transition kernel

e x — Q(x,A) is B(X)-measurable, for every A € B(X),
e A— Q(x,A) is a probability on B(X), for every x € X.

This framework is general enough to cover:

e Discretizations of homogeneous Ito-diffusions,
e Time series models with dependence,

e and much more.



Markov chains — a d t view

Random dynamical system representation
e Any general-state Markov process can be represented as

Xnt1 = f(Xnafn+1)>

e where (£,)n>1 is an i.i.d. noise sequence.
e The representation is not unique: different maps f may lead
to the same transition kernel.

Example:
Let {(An, Bn)} be an i.i.d. sequence with X,,+1 = A,,+1X,, —+ Bn+1
P((Ao, Bo) = (ai, b)) = w;, i=1,2,

where w; = 0.2993, wp =1 — wy.
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Markov chains in random environments — Definition

Let Y be a complete separable metric space and (Y,)ner, | = N, Z,
a Y-valued stochastic process. We say that the X'-valued process
(Xn)ner is a Markov chain in the random environment (Y}),c/
if

]P)(Xn—l-l cA ‘ (Xk)k§n7 (Yk)kel) = Q(Yn7Xn7A)7 Ac B(X)

The parametric kernel Q : Y x X x B(X) — [0, 1] satisfies:

e For each fixed A € B(X), (y,x) — Q(y, x,A) is
B(Y) @ B(X)-measurable.

e For each (y,x) € Y x X, A~ Q(y,x,A) is a probability
measure on B(X).

Intuitive meaning: If we freeze one trajectory of the environment
(Yn), then (X,) behaves like a time-inhomogeneous Markov
chain. 6



MCREs as random iterative models

o f(Xna Yn75n+1)
’ memory: X,

AN

Strict exogeneity condition: (¢,),>1 i.i.d., independent of the

Yn Xn+l

N

environment. No feedback exists between (¢,)p>1 and (Y5)nen.

e Mathematical model of online data processing.
e Environment (Y,)nec/ can be:

e Exogenous regressor

e Data stream

Sequential exogeneity / predetermination: ¢, independent of
past (Y,—j,en—j)j>1, may influence Y.

e Useful for more realistic econometric models.

e Not covered in this talk.



Applications of MCREs across fields




Epidemiology: Weekly dengue fever cases in San Juan

Tl caes Exogenous regressors:
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Epidemiology: Weekly dengue fever cases in San Juan

0 Tota cases Exogenous regressors:
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Current questions:

e Can we estimate the parametric kernel @ directly from data?

e |s there a theoretical guarantee that this estimation procedure is
correct?

Source: L. Truquet, “Time Series, Exogeneity and Random Environments.” 9



Economics: ry of optimal economic growth

Hypothetical economy: Produces a single good that can be consumed
or invested.

e Capital k; and consumption ¢;

e Output: y; = f(ki—1, 1), with ry as a productivity shock.

Objective:
rpc??E{;)étU(ct)} st ye = f(ke—1, 1), ¢+ ke < ye

e u(c): instantaneous utility
e §: discount factor
Intriguing questions

e Does an optimal consumption strategy exist?

e Does the optimal strategy ensure sustainable growth, i.e., does the
economy converge to a steady state with positive output and
consumption in the long run? 10



Financial mathematics: Stochastic volatility

In financial time series the volatility is time-varying (e.g. volatility
clustering):

Stochastic volatility models treat volatility as a random process.

Discrete time model (Gerencsér—Rasonyi, 2021):
oo
SnJrl = 'YSn + pez"71n+1 + v 1- P2 ezn€n+17 Z, = Z akMn—k;
k=0
where (1n)nez, (€n)nez are i.i.d. standard Gaussian, independent of each
other, 3 ai < 00.

e The price (S,)nez is conditionally Markov given the log-volatility
process (Z,)nez.



Machine learning: the SGLD algorithm, (Welling & Teh, 2011)

e Given a dataset D and parameter 6, we aim to sample from
p(0 | D) o< p(D | 6) p(6).

e Combine stochastic gradient descent (SGD) with Langevin
dynamics to approximate samples from a posterior
distribution.

e Update rule (with step size 7;):

Oni1 = Op— A H(0n, Xn) + /220 Enia,

where the gradient is replaced by a stochastic
, estimate: VU(0) = E[H(0, Xo)],
Exploitati ‘ U(Q) - |Og p(e | D)’ Sn ~ N(O, I), ||d

12



Queuing theory

Single-server queuing system with an infinite buffer and a first-in,
first-out (FIFO) service discipline:

Requests ——

Buffer Server

The waiting times satisfy the Lindley recursion:
Wn+1 = (Wn+5n_Zn+1)+7 nEN,
with Wy := 0, assuming an initially empty queue, where

e Z, denotes the time between the arrivals of the n-th and
(n + 1)-th customers,
e S, is the service time of the n-th customer. 13



th exogenous regressors
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Econometric modeling: t

Hungarian GDP and factor-based index of systematic stress (FISS):
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= Real Hungarian GDP (Production) YoY
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Source: Katalin Varga — Central Bank of Hungary



Questions relevant to practitioners

1. Stability: Does Law(X,), n € N, converge in some metric to
some limiting distribution?

2. Ergodicity: Under what conditions, and in what sense
(strong, weak, LP), does the law of large numbers hold?

3. Fluctuations: Does a (functional) central limit theorem apply
to the sequence of iterates?

e These questions highlight gaps in the statistical toolkit for
nonlinear autoregressive models, where few established tools
exist, particularly when the exogeneous covariate sequence
(Yn)nen is not stationary.

e Our objective is to contribute to this area by developing
theoretical tools to address these questions.
15



Main theoretical results




Main milestones of MCRE research

@ ar ‘
1p90 200 2010 25
Countable space Harris-type cgnditions
(Cogburn, Orey) contractive enMironment
G ér—Ra i, 201
General state spaces, (Gerencsér-Rejdiyit e
: - Contractivity |in average
Doeblin-type conditions | ;
e opalaine (Lovas—Rasonyi, 2019)
Non-compact spaces Stationary solution
strictly contracting dynamics ~ existence and unicity
(Stenflo) (Truquet}, 2021)

Non-stationary environment
transition of mixing

(Lovas—Truquet, 2025)
16



Standard conditions and their role

Drift/Lyapunov condition: there exists a function V : X — [0, 00) and
functions v, K : ) — (0, 00) such that

/X V(2) Qy.x,d2) < 4()V(x) + K(y),  (y,x) €Y x X.

e If v(y) < 1, the dynamics are contractive.
o If v(Y,) < 1 occurs sufficiently often*, then the process X, visits
appropriate level sets of V frequently enough.

-1
Minorization/small set condition: on V ([0, R])

Qly,x,A) = (1= B(R,y))rr(y,A), y €Y, A€ B(X).

e On level sets of V, the process has a positive
probability of "forgetting” its past at each
step.

e The larger 1 — 3(R,y) is, the stronger this
effect**.

+ additional assumptions to ensure * and **.

17

Level sets of V



Markov Chains in stationary random environment

Theorem (Lovas-Rasonyi, 2019) Under the long-term contractivity

condition
lim sup E/" <K(Y0) H’y(Yk)> <1
k=1

n—o0
along with additional technical conditions, we have:
e Convergence in total variation:
d
Law(X,) —/— p« as n — oo,
. . /3
with an explicit rate of order O(ce=""").

o If (Yy)nez is also ergodic, then for any bounded measurable
function ® : X - R and 1 < p < o0,

de)Xk —>/ z) px(dz).

The proof relies on an L-mixing result by L. Gerencsér.
18



Existence and uniqueness of a stationary solution

Theorem (L. Truquet, 2021): Given a stationary process
(Yn)nez and the conditions

E [log(v(Y0))+] + E[log(K(Y0))+] < oo, E[log(v(Y0))] <0,

there exists a Markov chain in random environment (X),cz such
that:

e The process ((Y:, X{))tez is stationary with a unique
invariant distribution.

o If (Yi)iez is ergodic, then ((Y:, X{))tez is also ergodic.

Truquet also showed that
Law(X,) drv, Law(X§) as n— oo

when Xy = xp is deterministic, though without providing an
explicit rate of convergence. 19



a-mixing processes (Rosenblatt, 1956)

For any sequence of random variables (W;);cz, we define:

oft‘f‘s/::a(Wk,tgkgs)for—oogtgsgoo.

e The mixing coefficient aJW(n) is defined as:

aJW(n) = sup{]P’(G NH)-P(G)P(H)| | F e F!VOOJ, G e ’F;li/noo} )
e The overall mixing coefficient of the process W is given by
a™(n) = sup;y aJW(n).

e The sequence (a"(n)),en is non-increasing and measures the
independence of events occurring at distant times.

Remark: Several mixing concepts exist, such as ¢, ¥, and p.
Among these the classical mixing concepts, a-mixing is the
weakest. 20



a-mixing (continued)

The decay rate of a"V(n) is quantified by the summability

criterion: .

Z [aW(n)} e < oo for some k> 0.

n=1
Size: (Wy)nen is said to be a-mixing of size —kq if
a(n)=0(n"") for some K > Ko.
A process W is strongly mixing if

. % .
nI|_>n;oa (n) =0.

Folklore: Stationarity + strong mixing = ergodicity = strong
law of large numbers.

Many powerful theoretical results are available for a-mixing

sequences. 21



Law of large numbers for a-mixing sequences

Theorem (MclLeish, 1975): Let (W,),en be a process with finite
means p, = E[W,] and with («(n))pen of size —r/(r — 2) for
r>2.

Furthermore, assume that

X SEW, — P\
z( | M|) o )
nP

n=1

for some p such that r/2 < p < r < co. Under these conditions,
1 n
*Z(Wk —pk) — 0 as. asn— 0.
n=

Remark: In the models we study, it holds that

sup E [ W, — pn|P < o0,
neN

so condition (1) is evidently satisfied. 22



Law of large numbers for a-mixing sequences (continued)

Theorem (Hansen, 2019): Consider a strongly mixing R-valued
process (W, )nen, and define the sequence of partial sums
Sn = 4_1 Wi for n > 1. Additionally, suppose that the following

uniform integrability condition holds:

1 n
lim sup — E(|W,|1(|W,| > B)) = 0. 2
dim_sup s SR (WAL > 8) 2)
Then, we have
&—E(S")Ll)O, n — oo.
n n

Remark: The average uniform integrability condition (2) is
satisfied if the process (W,)nen has a uniformly bounded moment,
i.e., sup,en E(|Wh|") < oo for some r > 1.

23



A recent CLT-like result for a-mixing variables

Theorem (Ekstrom, 2014): Let {{,; |1 <i < d,,ne€ N} be an
array of R-valued random variables with E¢, ; = 0.

Define S, = ZZ”Zl &nk for n € N, and assume:

i, SUppeny Maxi<i<d, E|&n 21" < oo for some r > 0,
i supnen YokZo(k + 1) (af (k) 7 < oo,

where o (-) is the strong mixing coefficient for the nth row.

Then, the distributions Law(d;1/25n) and N(O,Var(d,?l/25n)) are
weakly approaching i.e.

E[g(d 12g )} & (Var dn /%S, )1/2t) \/%e_édtﬁo as n — oo

for any bounded continuous function g : R — R.

24



A CLT for a-mixing sequences

Theorem (White, 2001): Let {X:,} be a triangular array of
scalars with means pt, = E[X;] and variances o2, = Var(X;,)
such that

sup E|Xtn|" < 00

t,n
for some r > 2. Suppose that {X:,} has a-mixing coefficient of
size —r/(r — 2) for r > 2. Furthermore, assume that

1 n

2

o, = Var —E Xin] >6>0
(ﬁt_l t)

for all sufficiently large n. Under these conditions, as n — oo,

On

\/ﬁ (yn - Hn) i> N(Ov 1)5

where ., .
_ 1 _ 1
Xn:n;th and Mn:n;Mtn. o5



Functional CLT for a-mixing sequences

In non-stationary cases, a major challenge is that Var(S,) can
diverge at an arbitrary nonlinear rate, complicating the analysis.

Herrndorf (1984): If E(W,) = 0, sup,cy E(W?21¢) < oo,
E(S2)/n — o > 0as n — oo, and oV (n) — 0 “sufficiently fast,” then a
functional CLT holds.

Note: By assuming E(S2)/n — o > 0 as n — oo, the variance issue is

circumvented. However, this result has been valuable in later research.

26
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diverge at an arbitrary nonlinear rate, complicating the analysis.
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For suitable functionals of MCREs, proving the > direction is
straightforward, while proving < required novel techniques. 26



Main assumptions

We assume that the parametric kernel Q satisfies the drift and
minorization conditions, such that the following hold:

Al
ro ::ng < 00, do = sup E[K(Y:) +~(Ys)] < o0,
>0 t>0
¢
dp = sup E|K(Y) [[r(Yerd)|, =1
tz- i=1

A2 Forany R > 0,

lim supP(3(R, Y;) > B) = 0.
BTl teN

27



Non-stationaty environments (Lovas—Truquet, 2025)

Suppose that either X is independent from (Y}):ez with
E[V(Xo0)] < 0o or ((Xt, Yt))sez is a stationary process.

1. Uniformly bounded moments: Suppose that for some
constant C > 0 and exponent p > 1, we have

()P < C(1+ V(x)).

Then,

sup [|®(Xj)llp < oo.
Jj=0

2. Transition of mixing: Set r; =), ; d, for some positive
integer /. Then there exist x € (0,1) and a positive constant
¢ such that

X,Y : . .n/q Y :
<c f { 1— } .
a™ ' (n) < L ri+ k" +a’ (qg+ i

28



Stationary environment — stability, (Lovas—Truquet, 2025)

The processes (W,,)nen and (W))pen are said to be forward
coupled, if there exists an almost surely finite random time 7 such
that

W, = W,g, n>r.

Assumptions:

e Suppose that (Y,)nez is strongly stationary and a-mixing.
o Let (X, Yn)nez denote the associated stationary process, and
let Xo be a random initial state independent of (Y;)nez.

Result: There exist versions of (X,)nen and (X)) nen that are
forward coupled. Furthermore, the following rate estimate holds:

- * < : . n/q Y(,_ :
|ILaw(X,) LaW(Xn)HTV_2C1Si|21;Sn{r,—|—/<a +a’(q /)}

29



Selected applications




Machine learning



Importance of optimization in learning

e Optimization is the standard tool for training machine
learning models.

e A loss function U : RY — R measures the discrepancy
between predictions and observed data.

Training as an optimization problem

0" = arg min U(0).
are i, U06)

Challenges

e d is typically very large and U is often non-convex.

e Training deep neural networks involves optimizing trillions of

parameters.

e U may not be explicitly available — only VU can be
estimated from data. 31



Pitfalls of gradient descent

Gradient descent (GD):
Ont1 =0, — AV U(6p)

is the earliest and most common optimization method.

e )\ > 0 is called step-size or learning rate depending on the

context.

Limitations:

o Computing gradients over the full dataset

can be expensive (minibatch SGD

mitigates this to some extent).

e GD can get stuck in local minima or
saddle points, especially in non-convex,

multimodal landscapes: 32



Would adding some artificial noise at each step help?

The Langevin iteration:
Oni1 = b0 — AVU(0,) + 1/ 3 Enta,

o (£n)n>1 are i.i.d. standard Gaussian variables,
e 3> 0 is the inverse temperature parameter.

150

125

u(x)

1.00

075

050

33



How Langevin iteration actually works?

The Langevin SDE:
dfy = =V U(0;)dt + 5~Y/2dB;,

where (B¢)¢>0 is a standard Brownian motion.

Convergence to unique invariant

distribution:
Law(0;) — mg, ma(dx) o e AU gy

For large 3, m3 concentrates to the

N — global minimum x*.

Error analysis:

e Law(f,) — g\ exponentially fast;
o 75, differs from mg: dya (75, m5.0) = O(VA). 3



When only an unbiased estimate of VU is available

Stochastic Gradient Langevin Dynamics (SGLD):

9n+1 = gn - )\H(enyxn) + \/ % §n+17
where
e (Xp)nen is an R™M-valued stationary process, interpreted as
data stream;
e H:RYx R™ — RY measurable function, the stochastic
gradient of U i.e. VU(0) = E[H(0, X0)], 6 € RY.
What we already know?
e The case when (X,)nen is i.i.d. has been thoroughly studied.
In this setting, (6n)nen forms a Markov chain.

e Our focus is on the more challenging situation where (X,)nen
may even be non-stationary. 35



Assumptions on the update function and the data stream

Assumptions on H:

e Dissipativity: there are measurable A, b: R™ — R and
v:R™ — [0,00) such that for all # € RY and x € R™,

(0. H(8,x)) = AX)]I0] = b(x).
e At most linear growth: for some L > 0

IHO,x)|| < L(||6]| + v(x) +1), #eRY xeR™.

Assumptions on (X,)qen:

e There exists § € (0,1) such that
supE | v(X,)? +|b(X,)|°| < oco.
neN

o A :=inf,enE[A(X,)] > 0. 30



The main theorem on SGLD (Lovas—Truquet, 2025)

Assume that there exists M > 0 such that for all t >0 and n > 1,

2
sup P’ (Z log y(X+j) > t+ ZE[Iogy Xk+1)]) < exp <_Mn) ;

JEN  \ =1 k=1

where
v(x) = 3L2/\2 — 2M\A(x) +

Then for step size 0 < A < the following holds:

3L2’

e There exists s € (0,1) such that for any ® : RY — R satisfying
|P(0)|P < C(1+|0]|*) for some C >0 and p > 1, we have

sup E[|9(6,)[P] < .
neN
e If oX(n) = O(n=?) for some a > 1, then af(n) = O (logn#) If

aX(n) = O(k") for some € (0,1), then there exists & € (0, 1)
such that a?(n) = O(RV").

37



Queuing systems



The queuing model

Recall the Lindley’s recursion:
Whi1 = (Wh+ Sn — Zny1) +, neN,
with Wy = 0 (initially empty queue), where
e Z, = inter-arrival time between the n-th and (n+ 1)-th

customers,

e S, = service time of the n-th customer.

Loynes’ classical results (1962)

Assuming the sequence {(Sp, Zn+1)}nez is stationary and ergodic:
e Subcritical case: E[Sy] < E[Z;] = the queue is stable.

e Supercritical case: E[Sy] > E[Z;] = the queue is
unstable.

e Critical case: E[So] = E[Z;] = the queue may be stable,

39
substable, or unstable.



Theorem (Gyorfi-Morvai, 1999)

Assume {(Sp, Zn+1) }nez is stationary and ergodic, and the system

is subcritical:
E[So] < E[Zl]

Then (W,)nen is forward coupled with a stationary and ergodic
(W) nez, where

n

W4 = sup Y, Y, = Z(S—k —Z 441), Yo=0.
neN k=1

Rate estimate:

K
|| Law( W,)—Law(Wg) HTV < ]P’<O<mkign Z(SJ = Zjp1) > max(Wa, Wy + So — Zl)> .

Jj=1

This bound is not informative in practice and of little use for
applications. 40



Stationary service times, stability (Lovas, 2024)

Assumptions: Let (S,),cz be stationary, bounded, and
independent of i.i.d. (Z,).

e The system is subcritical E[So] < E[Z1].
e Log-moment generating function

F(t) = n||_>n;o % log Eet(51+.‘.+5n)

exists and is differentiable near 0.
e P(Zy > 1) > 0 for a suitable threshold 7.

Result: There exists a stationary (S, W) ,cz satisfying the
Lindley recursion such that

e Processes (W,) and (W) are forward coupled,

e for some x € (0, 1),

[Law(Wy) — Law(W) v = O(x*/2). “



Non-stationary service times (Lovas, 2024)

Under some additional technical assumptions:
A) If (S,) is strongly mixing, then
1< 11
; Z (Wk — E[Wk]) — 0.
k=1
B) If a®(n) < cn* with s > 1, then
1 & as
- > (Wi —E[Wi]) 22 0.
k=1

C) If 3=, (n+1)2a°(n)? < oo for some § € (0,1), then a
CLT-type bound holds:

lim sup P(\;‘ ;(Wk —EWk)‘ > a) < P(c€ > a),

n—oo

for some o > 0 with £ ~ N(0,1). i



Invariance principle for queues (Lovas, 2024)

Assumptions:

0021()
fz,(2)

e Arrival density fz, satisfying f dz < oc.

e Queue stability condition: I|m|nf,,_,oo% e 0 P(Sx > Z1)? > 0.

e Mixing: for some 6 >0, > -, n°a®(n) < oo.

Wi EW] g
Var(Z,) '

Va(t) = min{l < k < n| Var(Xy) > tVar(X,)}.

Result: Define £, =", | Wi, &n =

Then the partial-sum process

Zﬁkm (0.1],

converges in distribution (in D([0, 1]) with uniform topology) to a
standard Brownian motion.
43



Econometrics



A simple VAR-X model

Let Y, € RY, n € N be an exogenous process. We consider the
process X, € R obeying the linear dynamics

Xn+1 = AXn + BYn + €n+1, (3)
where

e A and B are fixed d x d matrices such that the spectral radius
of A satisfies r(A) < 1;

o (gn)p>1 is i.i.d. independent of (Y,)nen;

e E[leg|] < oo, Law(ep) is absolutely continuous with respect to
the Lebesgue measure, with density bounded away from zero
on compact sets;

e Xp and (5)n>1 are conditionally independent given Y.
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Theorem (Lovas—Truquet, 2025)

Under our standing assumptions, if

sup E[|| Yal|] < oo,
neN

then there exist constants ¢” > 0 and r € (0, 1) such that
aX,Y(n) < (__N[rnl/2 + aY(Ln1/2/2J)} )
Moreover, for any function ® : RY — R satisfying
[P < (14 [Ix]D),
for some ¢’ > 0, the moments are uniformly bounded:

sup E[|®(X,)[] < .
neN

Corollary:All classical results available for mixing processes also apply
here:

e Law of Large Numbers (LLN), construction of confidence intervals, 26
concentration inequalities, and beyond.



Future research and challenges




Future research and challenges

Theory:
o Refine existing results on the transition of c-mixing.

e Establish transfer of mixing properties under monotonicity
conditions on the parametric kernel — essential for
applications in stochastic optimal economic growth.

e Extend the theory to sequentially exogenous random
iterative models, motivated by econometrics.
Applications:

e Advanced queuing models (multi-server systems, finite buffer
capacity, diverse service disciplines).

e Convergence analysis of Monte Carlo algorithms on data
streams.

e Structural design of polymers. a7



Thank you for your attention!

Questions?
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