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Expected outcome, my goals, why I am here...

Motivation

Many real-world stochastic models can be understood as Markov

chains in random environments (MCREs). Recently, this theory

has made remarkable progress. My goal today is to share these

new insights and highlight their value for practitioners.

Opportunities and challenges

• Still many open problems remain: both in theory and in

applications (machine learning, stochastic volatility, growth

models in economics, etc.).

• These challenges range from approachable to deep

mathematical problems.

• We welcome motivated students to join research at various

levels: BSc, MSc, or PhD theses.
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Introduction



Starting point: classical discrete state Markov chains

Markov property:

The future state depends only on

the present state, not on the past

history.

P(Xn+1 = j | Xn = i , (Xk)k<n) = Pij

Pij = P(Xn+1 = j | Xn = i), i , j ∈ X ,

where |X | ≤ ℵ0.

Example: X = {1, 2, 3}:

P =

0.5 0.3 0.2

0.1 0.7 0.2

0.4 0.2 0.4


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General state spaces Markov chains

State space: complete, separable metric space (X , dX×X ), B(X )

refers to its Borel σ-algebra.

Markov property:

P(Xn+1 ∈ A | Xn = x , (Xk)k<n) = Q(x ,A), x ∈ X , A ∈ B(X ),

where the transition kernel

• x 7→ Q(x ,A) is B(X )-measurable, for every A ∈ B(X ),

• A 7→ Q(x ,A) is a probability on B(X ), for every x ∈ X .

This framework is general enough to cover:

• Discretizations of homogeneous Itô-diffusions,

• Time series models with dependence,

• and much more.
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Markov chains – a different view

Random dynamical system representation

• Any general-state Markov process can be represented as

Xn+1 = f (Xn, ξn+1),

• where (ξn)n≥1 is an i.i.d. noise sequence.

• The representation is not unique: different maps f may lead

to the same transition kernel.

Example:

Let {(An,Bn)} be an i.i.d. sequence with

P
(
(A0,B0) = (ai , bi )

)
= wi , i = 1, 2,

where w1 = 0.2993, w2 = 1− w1.

a1 =

[
0.4 −0.3733

0.06 0.6

]
, b1 =

[
0.3533

0

]

a2 =

[
−0.8 −0.1867

0.1371 0.8

]
, b2 =

[
1.1

0.1

]

Xn+1 = An+1Xn + Bn+1
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Markov chains in random environments – Definition

Let Y be a complete separable metric space and (Yn)n∈I , I = N,Z,

a Y-valued stochastic process. We say that the X -valued process

(Xn)n∈I is a Markov chain in the random environment (Yn)n∈I

if

P
(
Xn+1 ∈ A

∣∣ (Xk)k≤n, (Yk)k∈I
)

= Q(Yn,Xn,A), A ∈ B(X ).

The parametric kernel Q : Y × X × B(X )→ [0, 1] satisfies:

• For each fixed A ∈ B(X ), (y , x) 7→ Q(y , x ,A) is

B(Y)⊗ B(X )-measurable.

• For each (y , x) ∈ Y × X , A 7→ Q(y , x ,A) is a probability

measure on B(X ).

Intuitive meaning: If we freeze one trajectory of the environment

(Yn), then (Xn) behaves like a time-inhomogeneous Markov

chain. 6



MCREs as random iterative models

Yn
f (Xn,Yn, εn+1)

memory: Xn
Xn+1

Strict exogeneity condition: (εn)n≥1 i.i.d., independent of the

environment. No feedback exists between (εn)n≥1 and (Yn)n∈N.

• Mathematical model of online data processing.
• Environment (Yn)n∈I can be:

• Exogenous regressor

• Data stream

Sequential exogeneity / predetermination: εn independent of

past (Yn−j , εn−j)j≥1, may influence Yn.

• Useful for more realistic econometric models.

• Not covered in this talk.
7



Applications of MCREs across fields

MCREs

Machine

learning

Financial

mathematics

Economics

Epidemiology

Econometric

modeling

Queuing

theory
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Epidemiology: Weekly dengue fever cases in San JuanReal data example: Weekly number of Dengue cases in
San Juan (Porto Rico)

Exogenous regressors:

• Relative humidity: Moisture

conditions affecting

mosquitoes.

• Average temperature:

Influences breeding and virus

spread.

• Vegetation index: Habitat

quality; dense vegetation

provides breeding grounds.

Current questions:

• Can we estimate the parametric kernel Q directly from data?

• Is there a theoretical guarantee that this estimation procedure is

correct?

Source: L. Truquet, “Time Series, Exogeneity and Random Environments.”

9



Epidemiology: Weekly dengue fever cases in San JuanReal data example: Weekly number of Dengue cases in
San Juan (Porto Rico)

Exogenous regressors:

• Relative humidity: Moisture

conditions affecting

mosquitoes.

• Average temperature:

Influences breeding and virus

spread.

• Vegetation index: Habitat

quality; dense vegetation

provides breeding grounds.

Current questions:

• Can we estimate the parametric kernel Q directly from data?

• Is there a theoretical guarantee that this estimation procedure is

correct?

Source: L. Truquet, “Time Series, Exogeneity and Random Environments.” 9



Economics: Theory of optimal economic growth

Hypothetical economy: Produces a single good that can be consumed

or invested.

• Capital kt and consumption ct

• Output: yt = f (kt−1, rt), with rt as a productivity shock.

Objective:

max
{ct}

E
[ ∞∑

t=0

δtu(ct)
]

s.t. yt = f (kt−1, rt), ct + kt ≤ yt

• u(c): instantaneous utility

• δ: discount factor

Intriguing questions

• Does an optimal consumption strategy exist?

• Does the optimal strategy ensure sustainable growth, i.e., does the

economy converge to a steady state with positive output and

consumption in the long run? 10



Financial mathematics: Stochastic volatility

In financial time series the volatility is time-varying (e.g. volatility

clustering):

Stochastic volatility models treat volatility as a random process.

Discrete time model (Gerencsér–Rásonyi, 2021):

Sn+1 = γSn + ρeZnηn+1 +
√

1− ρ2 eZnεn+1, Zn =
∞∑
k=0

akηn−k ,

where (ηn)n∈Z, (εn)n∈Z are i.i.d. standard Gaussian, independent of each

other,
∑

a2
k <∞.

• The price (Sn)n∈Z is conditionally Markov given the log-volatility

process (Zn)n∈Z.
11



Machine learning: the SGLD algorithm, (Welling & Teh, 2011)

• Given a dataset D and parameter θ, we aim to sample from

p(θ | D) ∝ p(D | θ) p(θ).

• Combine stochastic gradient descent (SGD) with Langevin

dynamics to approximate samples from a posterior

distribution.

• Update rule (with step size ηt):

θn+1 = θn − λn H(θn,Xn) +
√

2λn ξn+1,

where the gradient is replaced by a stochastic

estimate: ∇U(θ) = E[H(θ,X0)],

U(θ) = − log p(θ | D), ξn ∼ N (0, I ), i.i.d.

12



Queuing theory

Single-server queuing system with an infinite buffer and a first-in,

first-out (FIFO) service discipline:

Requests

Buffer Server

The waiting times satisfy the Lindley recursion:

Wn+1 = (Wn + Sn − Zn+1)+, n ∈ N,

with W0 := 0, assuming an initially empty queue, where

• Zn denotes the time between the arrivals of the n-th and

(n + 1)-th customers,

• Sn is the service time of the n-th customer. 13



Econometric modeling: time series with exogenous regressors

Hungarian GDP and factor-based index of systematic stress (FISS):

Source: Katalin Varga – Central Bank of Hungary
14



Questions relevant to practitioners

1. Stability: Does Law(Xn), n ∈ N, converge in some metric to

some limiting distribution?

2. Ergodicity: Under what conditions, and in what sense

(strong, weak, Lp), does the law of large numbers hold?

3. Fluctuations: Does a (functional) central limit theorem apply

to the sequence of iterates?

• These questions highlight gaps in the statistical toolkit for

nonlinear autoregressive models, where few established tools

exist, particularly when the exogeneous covariate sequence

(Yn)n∈N is not stationary.

• Our objective is to contribute to this area by developing

theoretical tools to address these questions.
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Main theoretical results



Main milestones of MCRE research

1990 2000 2010 2025

Countable spaces

(Cogburn, Orey)

General state spaces,

Doeblin-type conditions

(Kifer, Seppalainen)

Non-compact spaces

strictly contracting dynamics

(Stenflo)

Harris-type conditions

contractive environment

(Gerencsér–Rásonyi, 2018)

Contractivity in average

(Lovas–Rásonyi, 2019)

Stationary solution

existence and unicity

(Truquet, 2021)

Non-stationary environment

transition of mixing

(Lovas–Truquet, 2025)
16



Standard conditions and their role

Drift/Lyapunov condition: there exists a function V : X → [0,∞) and

functions γ,K : Y → (0,∞) such that∫
X
V (z)Q(y , x ,dz) ≤ γ(y)V (x) + K (y), (y , x) ∈ Y × X .

• If γ(y) < 1, the dynamics are contractive.

• If γ(Yn) < 1 occurs sufficiently often*, then the process Xn visits

appropriate level sets of V frequently enough.

Minorization/small set condition: on
−1

V ([0,R])

Q(y , x ,A) ≥ (1− β(R, y))κR(y ,A), y ∈ Y, A ∈ B(X ).

• On level sets of V , the process has a positive

probability of ”forgetting” its past at each

step.

• The larger 1− β(R, y) is, the stronger this

effect**.

+ additional assumptions to ensure * and **. 17



Markov Chains in stationary random environment

Theorem (Lovas-Rásonyi, 2019) Under the long-term contractivity

condition

lim sup
n→∞

E1/n

(
K (Y0)

n∏
k=1

γ(Yk)

)
< 1,

along with additional technical conditions, we have:

• Convergence in total variation:

Law(Xn)
dTV−−→ µ∗ as n→∞,

with an explicit rate of order O(c1e
−c2n

1/3

).

• If (Yn)n∈Z is also ergodic, then for any bounded measurable

function Φ : X → R and 1 ≤ p <∞,

1

n

n∑
k=1

Φ(Xk)
Lp

−→
∫
X

Φ(z)µ∗(dz).

The proof relies on an L-mixing result by L. Gerencsér.
18



Existence and uniqueness of a stationary solution

Theorem (L. Truquet, 2021): Given a stationary process

(Yn)n∈Z and the conditions

E [log(γ(Y0))+] + E [log(K (Y0))+] <∞, E [log(γ(Y0))] < 0,

there exists a Markov chain in random environment (X ∗n )n∈Z such

that:

• The process ((Yt ,X
∗
t ))t∈Z is stationary with a unique

invariant distribution.

• If (Yt)t∈Z is ergodic, then ((Yt ,X
∗
t ))t∈Z is also ergodic.

Truquet also showed that

Law(Xn)
dTV−−→ Law(X ∗0 ) as n→∞

when X0 = x0 is deterministic, though without providing an

explicit rate of convergence. 19



α-mixing processes (Rosenblatt, 1956)

For any sequence of random variables (Wt)t∈Z, we define:

• FW
t,s := σ(Wk , t ≤ k ≤ s) for −∞ ≤ t ≤ s ≤ ∞.

• The mixing coefficient αW
j (n) is defined as:

αW
j (n) = sup

{
|P(G ∩ H)− P(G )P(H)|

∣∣∣∣F ∈ FW
−∞,j , G ∈ FW

j+n,∞

}
.

• The overall mixing coefficient of the process W is given by

αW (n) = supj∈Z α
W
j (n).

• The sequence (αW (n))n∈N is non-increasing and measures the

independence of events occurring at distant times.

Remark: Several mixing concepts exist, such as φ, ψ, and ρ.

Among these the classical mixing concepts, α-mixing is the

weakest. 20



α-mixing (continued)

The decay rate of αW (n) is quantified by the summability

criterion: ∞∑
n=1

[
αW (n)

]1/κ
<∞ for some κ > 0.

Size: (Wn)n∈N is said to be α-mixing of size −κ0 if

αW (n) = O(n−κ) for some κ > κ0.

A process W is strongly mixing if

lim
n→∞

αW (n) = 0.

Folklore: Stationarity + strong mixing ⇒ ergodicity ⇒ strong

law of large numbers.

Many powerful theoretical results are available for α-mixing

sequences.
21



Law of large numbers for α-mixing sequences

Theorem (McLeish, 1975): Let (Wn)n∈N be a process with finite

means µn = E[Wn] and with (α(n))n∈N of size −r/(r − 2) for

r > 2.

Furthermore, assume that
∞∑
n=1

(
E |Wn − µn|p

np

)2/r

<∞ (1)

for some p such that r/2 < p ≤ r <∞. Under these conditions,

1

n

n∑
k=1

(Wk − µk)→ 0 a.s. as n→∞.

Remark: In the models we study, it holds that

sup
n∈N

E |Wn − µn|p <∞,

so condition (1) is evidently satisfied. 22



Law of large numbers for α-mixing sequences (continued)

Theorem (Hansen, 2019): Consider a strongly mixing R-valued

process (Wn)n∈N, and define the sequence of partial sums

Sn :=
∑n

k=1 Wk for n ≥ 1. Additionally, suppose that the following

uniform integrability condition holds:

lim
B→∞

sup
n≥1

1

n

n∑
k=1

E (|Wn|1(|Wn| ≥ B)) = 0. (2)

Then, we have

Sn
n
− E(Sn)

n
L1

−→ 0, n→∞.

Remark: The average uniform integrability condition (2) is

satisfied if the process (Wn)n∈N has a uniformly bounded moment,

i.e., supn∈N E(|Wn|r ) <∞ for some r > 1.

23



A recent CLT-like result for α-mixing variables

Theorem (Ekström, 2014): Let {ξn,i | 1 ≤ i ≤ dn, n ∈ N} be an

array of R-valued random variables with Eξn,i = 0.

Define Sn =
∑dn

k=1 ξn,k for n ∈ N, and assume:

i. supn∈N max1≤i≤dn E|ξn,i |2+r <∞ for some r > 0,

ii. supn∈N
∑∞

k=0(k + 1)2
(
αξn,·(k)

) r
4+r <∞,

where αξn,·(·) is the strong mixing coefficient for the nth row.

Then, the distributions Law(d
−1/2
n Sn) and N (0,Var(d

−1/2
n Sn)) are

weakly approaching i.e.

E
[
g
(
d
−1/2
n Sn

)]
−
∫
R g
(
Var(d

−1/2
n Sn)1/2t

)
1√
2π
e−

t2

2 dt → 0 as n→∞

for any bounded continuous function g : R→ R.

24



A CLT for α-mixing sequences

Theorem (White, 2001): Let {Xtn} be a triangular array of

scalars with means µtn = E[Xtn] and variances σ2
tn = Var(Xtn)

such that

sup
t,n

E|Xtn|r <∞

for some r ≥ 2. Suppose that {Xtn} has α-mixing coefficient of

size −r/(r − 2) for r > 2. Furthermore, assume that

σ2
n = Var

(
1√
n

n∑
t=1

Xtn

)
≥ δ > 0

for all sufficiently large n. Under these conditions, as n→∞,
√
n

σn

(
X n − µn

) d−→ N(0, 1),

where

X n =
1

n

n∑
t=1

Xtn and µn =
1

n

n∑
t=1

µtn. 25



Functional CLT for α-mixing sequences

In non-stationary cases, a major challenge is that Var(Sn) can

diverge at an arbitrary nonlinear rate, complicating the analysis.

Herrndorf (1984): If E(Wn) = 0, supn∈N E(W 2+ε
n ) <∞,

E(S2
n )/n→ σ ≥ 0 as n→∞, and αW (n)→ 0 “sufficiently fast,” then a

functional CLT holds.

Note: By assuming E(S2
n )/n→ σ ≥ 0 as n→∞, the variance issue is

circumvented. However, this result has been valuable in later research.

Merlevède, Peligrad, and Utev (2019): Functional CLT for random

variables {ξk,n | k ≤ n} satisfying the Lindeberg condition. In addition to

supm α
ξ·,m(n)→ 0 sufficiently fast, they required:

n∑
j=1

Var(ξj,n) = O (Var(Sn)) .

For suitable functionals of MCREs, proving the ≥ direction is

straightforward, while proving ≤ required novel techniques.

26
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Main assumptions

We assume that the parametric kernel Q satisfies the drift and

minorization conditions, such that the following hold:

A1

r0 :=
∑
`≥0

d` <∞, d0 = sup
t≥0

E
[
K (Yt) + γ(Yt)

]
<∞,

d` := sup
t≥−1

E

[
K (Yt)

∏̀
i=1

γ(Yt+i )

]
, ` ≥ 1.

A2 For any R > 0,

lim
β↑1

sup
t∈N

P
(
β(R,Yt) > β

)
= 0.

27



Non-stationaty environments (Lovas–Truquet, 2025)

Suppose that either X0 is independent from (Yt)t∈Z with

E [V (X0)] <∞ or ((Xt ,Yt))t∈Z is a stationary process.

1. Uniformly bounded moments: Suppose that for some

constant C > 0 and exponent p > 1, we have

|Φ(x)|p ≤ C (1 + V (x)).

Then,

sup
j≥0
‖Φ(Xj)‖p <∞.

2. Transition of mixing: Set ri =
∑

`≥i d` for some positive

integer i . Then there exist κ ∈ (0, 1) and a positive constant

c such that

αX ,Y (n) ≤ c inf
1≤i≤q≤n

{
ri + κn/q + αY (q + 1− i)

}
.

28



Stationary environment – stability, (Lovas–Truquet, 2025)

The processes (Wn)n∈N and (W ′
n)n∈N are said to be forward

coupled, if there exists an almost surely finite random time τ such

that

Wn = W ′
n, n ≥ τ.

Assumptions:

• Suppose that (Yn)n∈Z is strongly stationary and α-mixing.

• Let (X ∗n ,Yn)n∈Z denote the associated stationary process, and

let X0 be a random initial state independent of (Yn)n∈Z.

Result: There exist versions of (Xn)n∈N and (X ∗n )n∈N that are

forward coupled. Furthermore, the following rate estimate holds:

‖Law(Xn)− Law(X ∗n )‖TV ≤ 2c inf
1≤i≤q≤n

{
ri + κn/q + αY (q − i)

}
29



Selected applications



Machine learning



Importance of optimization in learning

• Optimization is the standard tool for training machine

learning models.

• A loss function U : Rd → R measures the discrepancy

between predictions and observed data.

Training as an optimization problem

θ∗ = arg min
θ∈Rd

U(θ).

Challenges

• d is typically very large and U is often non-convex.

• Training deep neural networks involves optimizing trillions of

parameters.

• U may not be explicitly available — only ∇U can be

estimated from data. 31



Pitfalls of gradient descent

Gradient descent (GD):

θn+1 = θn − λ∇U(θn)

is the earliest and most common optimization method.

• λ > 0 is called step-size or learning rate depending on the

context.

Limitations:

• Computing gradients over the full dataset

can be expensive (minibatch SGD

mitigates this to some extent).

• GD can get stuck in local minima or

saddle points, especially in non-convex,

multimodal landscapes: 32



Would adding some artificial noise at each step help?

The Langevin iteration:

θn+1 = θn − λ∇U(θn) +
√

2λ
β ξn+1,

• (ξn)n≥1 are i.i.d. standard Gaussian variables,

• β > 0 is the inverse temperature parameter.

33



How Langevin iteration actually works?

The Langevin SDE:

dθt = −∇U(θt)dt + β−1/2dBt ,

where (Bt)t≥0 is a standard Brownian motion.

Convergence to unique invariant

distribution:

Law(θt)→ πβ, πβ(dx) ∝ e−βU(x)dx .

For large β, πβ concentrates to the

global minimum x∗.

Error analysis:

• Law(θn)→ πβ,λ exponentially fast;

• πβ,λ differs from πβ: dW 1(πβ, πβ,λ) = O(
√
λ).

34



When only an unbiased estimate of ∇U is available

Stochastic Gradient Langevin Dynamics (SGLD):

θn+1 = θn − λH(θn,Xn) +
√

2λ
β ξn+1,

where

• (Xn)n∈N is an Rm-valued stationary process, interpreted as

data stream;

• H : Rd × Rm → Rd measurable function, the stochastic

gradient of U i.e. ∇U(θ) = E [H(θ,X0)] , θ ∈ Rd .

What we already know?

• The case when (Xn)n∈N is i.i.d. has been thoroughly studied.

In this setting, (θn)n∈N forms a Markov chain.

• Our focus is on the more challenging situation where (Xn)n∈N

may even be non-stationary. 35



Assumptions on the update function and the data stream

Assumptions on H:

• Dissipativity: there are measurable ∆, b : Rm → R and

v : Rm → [0,∞) such that for all θ ∈ Rd and x ∈ Rm,

〈θ,H(θ, x)〉 ≥ ∆(x)‖θ‖2 − b(x).

• At most linear growth: for some L > 0

‖H(θ, x)‖ ≤ L(‖θ‖+ v(x) + 1), θ ∈ Rd , x ∈ Rm.

Assumptions on (Xn)n∈N:

• There exists δ ∈ (0, 1) such that

sup
n∈N

E
[
v(Xn)2δ + |b(Xn)|δ

]
<∞.

• ∆̃ := infn∈N E[∆(Xn)] > 0.
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The main theorem on SGLD (Lovas–Truquet, 2025)

Assume that there exists M > 0 such that for all t > 0 and n ≥ 1,

sup
j∈N

P

(
n∑

k=1

log γ(Xk+j) > t +
n∑

k=1

E[log γ(Xk+j)]

)
≤ exp

(
− t2

Mn

)
,

where

γ(x) = 3L2λ2 − 2λ∆(x) + 1.

Then for step size 0 < λ < 2∆̃
3L2 , the following holds:

• There exists s ∈ (0, 1) such that for any Φ : Rd → R satisfying

|Φ(θ)|p ≤ C (1 + ‖θ‖2s) for some C > 0 and p ≥ 1, we have

sup
n∈N

E[|Φ(θn)|p] <∞.

• If αX (n) = O(n−a) for some a > 1, then αθ(n) = O
(

loga(n)
na

)
. If

αX (n) = O(κn) for some κ ∈ (0, 1), then there exists κ̄ ∈ (0, 1)

such that αθ(n) = O(κ̄
√
n).
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Queuing systems



The queuing model

Recall the Lindley’s recursion:

Wn+1 = (Wn + Sn − Zn+1)+, n ∈ N,

with W0 = 0 (initially empty queue), where

• Zn = inter-arrival time between the n-th and (n + 1)-th

customers,

• Sn = service time of the n-th customer.

Loynes’ classical results (1962)

Assuming the sequence {(Sn,Zn+1)}n∈Z is stationary and ergodic:

• Subcritical case: E[S0] < E[Z1] ⇒ the queue is stable.

• Supercritical case: E[S0] > E[Z1] ⇒ the queue is

unstable.

• Critical case: E[S0] = E[Z1] ⇒ the queue may be stable,

substable, or unstable.
39



Theorem (Györfi–Morvai, 1999)

Assume {(Sn,Zn+1)}n∈Z is stationary and ergodic, and the system

is subcritical:

E[S0] < E[Z1].

Then (Wn)n∈N is forward coupled with a stationary and ergodic

(W ′
n)n∈Z, where

W ′
0 = sup

n∈N
Yn, Yn =

n∑
k=1

(S−k − Z−k+1), Y0 = 0.

Rate estimate:

∥∥Law(Wn)−Law(W ′0 )
∥∥
TV
≤ P

(
min

0<k<n

k∑
j=1

(Sj − Zj+1) > max
(
W1, W

′
0 + S0 − Z1

))
.

This bound is not informative in practice and of little use for

applications. 40



Stationary service times, stability (Lovas, 2024)

Assumptions: Let (Sn)n∈Z be stationary, bounded, and

independent of i.i.d. (Zn).

• The system is subcritical E[S0] < E[Z1].

• Log-moment generating function

Γ(t) = lim
n→∞

1
n logEet(S1+···+Sn)

exists and is differentiable near 0.

• P(Z0 ≥ τ) > 0 for a suitable threshold τ .

Result: There exists a stationary (Sn,W
∗
n )n∈Z satisfying the

Lindley recursion such that

• Processes (Wn) and (W ∗
n ) are forward coupled,

• for some κ ∈ (0, 1),

‖Law(Wn)− Law(W ∗
n )‖TV = O(κ1/2).
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Non-stationary service times (Lovas, 2024)

Under some additional technical assumptions:

A) If (Sn) is strongly mixing, then

1

n

n∑
k=1

(
Wk − E[Wk ]

) L1

−→ 0.

B) If αS(n) ≤ cn−κ with κ > 1, then

1

n

n∑
k=1

(
Wk − E[Wk ]

) a.s.−−→ 0.

C) If
∑

n(n + 1)2αS(n)δ <∞ for some δ ∈ (0, 1), then a

CLT-type bound holds:

lim sup
n→∞

P

(
1√
n

∣∣∣ n∑
k=1

(Wk − EWk)
∣∣∣ ≥ a

)
≤ P(σξ ≥ a),

for some σ > 0 with ξ ∼ N (0, 1).
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Invariance principle for queues (Lovas, 2024)

Assumptions:

• Arrival density fZ1 satisfying
∫∞

0

f ′Z1
(z)2

fZ1
(z) dz <∞.

• Queue stability condition: lim infn→∞
1
n

∑n−1
k=0 P(Sk > Z1)2 > 0.

• Mixing: for some δ > 0,
∑

n≥1 n
δαS(n) <∞.

Result: Define Σn =
∑n

k=1 Wk , ξk,n = Wk−E[Wk ]√
Var(Σn)

, and

vn(t) = min{1 ≤ k ≤ n | Var(Σk) ≥ tVar(Σn)}.

Then the partial-sum process

Bn(t) =

vn(t)∑
k=1

ξk,n, t ∈ (0, 1],

converges in distribution (in D([0, 1]) with uniform topology) to a

standard Brownian motion.
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Econometrics



A simple VAR-X model

Let Yn ∈ Rd , n ∈ N be an exogenous process. We consider the

process Xn ∈ Rd obeying the linear dynamics

Xn+1 = AXn + BYn + εn+1, (3)

where

• A and B are fixed d × d matrices such that the spectral radius

of A satisfies r(A) < 1;

• (εn)n≥1 is i.i.d. independent of (Yn)n∈N;

• E[|ε0|] <∞, Law(ε0) is absolutely continuous with respect to

the Lebesgue measure, with density bounded away from zero

on compact sets;

• X0 and (εn)n≥1 are conditionally independent given Y .
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Theorem (Lovas–Truquet, 2025)

Under our standing assumptions, if

sup
n∈N

E[‖Yn‖] <∞,

then there exist constants c ′′ > 0 and r ∈ (0, 1) such that

αX ,Y (n) ≤ c ′′
[
r n

1/2
+ αY

(
bn1/2/2c

)]
.

Moreover, for any function Φ : Rd → R satisfying

|Φ(x)| ≤ c ′(1 + ‖x‖),

for some c ′ > 0, the moments are uniformly bounded:

sup
n∈N

E[|Φ(Xn)|] <∞.

Corollary:All classical results available for mixing processes also apply

here:

• Law of Large Numbers (LLN), construction of confidence intervals,

concentration inequalities, and beyond.
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Future research and challenges



Future research and challenges

Theory:

• Refine existing results on the transition of α-mixing.

• Establish transfer of mixing properties under monotonicity

conditions on the parametric kernel → essential for

applications in stochastic optimal economic growth.

• Extend the theory to sequentially exogenous random

iterative models, motivated by econometrics.

Applications:

• Advanced queuing models (multi-server systems, finite buffer

capacity, diverse service disciplines).

• Convergence analysis of Monte Carlo algorithms on data

streams.

• Structural design of polymers. 47



Thank you for your attention!

Questions?
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