

# Markov Chains in Random Environments

## Theory and Applications

---

Attila Lovas

BME Mathematical Modeling Seminar  
Budapest University of Technology and Economics  
30 September, 2025

HUN-REN Alfréd Rényi Institute of Mathematics  
Budapest University of Technology and Economics

# Expected outcome, my goals, why I am here...

## Motivation

Many real-world stochastic models can be understood as **Markov chains in random environments (MCREs)**. Recently, this theory has made remarkable progress. My goal today is to **share these new insights** and highlight their value for practitioners.

# Expected outcome, my goals, why I am here...

## Motivation

Many real-world stochastic models can be understood as **Markov chains in random environments (MCREs)**. Recently, this theory has made remarkable progress. My goal today is to **share these new insights** and highlight their value for practitioners.

## Opportunities and challenges

- Still many open problems remain: both in theory and in applications (machine learning, stochastic volatility, growth models in economics, etc.).

# Expected outcome, my goals, why I am here...

## Motivation

Many real-world stochastic models can be understood as **Markov chains in random environments (MCREs)**. Recently, this theory has made remarkable progress. My goal today is to **share these new insights** and highlight their value for practitioners.

## Opportunities and challenges

- Still many open problems remain: both in theory and in applications (machine learning, stochastic volatility, growth models in economics, etc.).
- These challenges range from approachable to deep mathematical problems.

# Expected outcome, my goals, why I am here...

## Motivation

Many real-world stochastic models can be understood as **Markov chains in random environments (MCREs)**. Recently, this theory has made remarkable progress. My goal today is to **share these new insights** and highlight their value for practitioners.

## Opportunities and challenges

- Still many open problems remain: both in theory and in applications (machine learning, stochastic volatility, growth models in economics, etc.).
- These challenges range from approachable to deep mathematical problems.
- We welcome motivated students to join research at various levels: **BSc, MSc, or PhD theses**.

# Overview

## Introduction

From Markov chains to MCREs

Applications of MCREs across fields

## Main theoretical results

Existence of the stationary solution

Transition of  $\alpha$ -mixing

## Selected applications

Machine learning with SGLD

Queuing systems

Linear systems with exogenous covariates

## Future research and challenges

# Introduction

---

# Starting point: classical discrete state Markov chains

## Markov property:

The future state depends only on the present state, not on the past history.

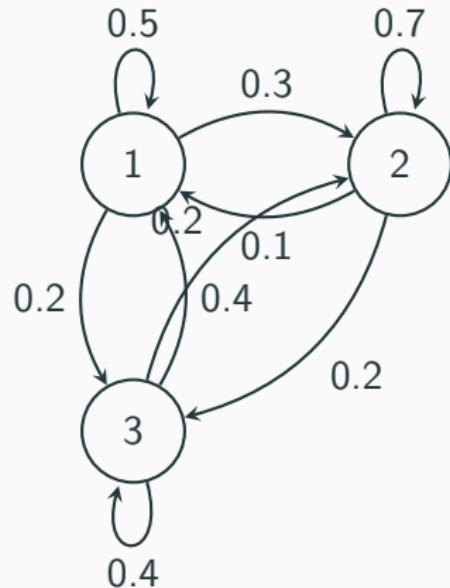
$$P(X_{n+1} = j \mid X_n = i, (X_k)_{k < n}) = P_{ij}$$

$$P_{ij} = P(X_{n+1} = j \mid X_n = i), \quad i, j \in \mathcal{X},$$

where  $|\mathcal{X}| \leq \aleph_0$ .

**Example:**  $\mathcal{X} = \{1, 2, 3\}$ :

$$P = \begin{pmatrix} 0.5 & 0.3 & 0.2 \\ 0.1 & 0.7 & 0.2 \\ 0.4 & 0.2 & 0.4 \end{pmatrix}$$



# General state spaces Markov chains

**State space:** complete, separable metric space  $(\mathcal{X}, d_{\mathcal{X} \times \mathcal{X}})$ ,  $\mathcal{B}(\mathcal{X})$  refers to its Borel  $\sigma$ -algebra.

**Markov property:**

$$\mathbb{P}(X_{n+1} \in A \mid X_n = x, (X_k)_{k < n}) = Q(x, A), \quad x \in \mathcal{X}, \quad A \in \mathcal{B}(\mathcal{X}),$$

where the transition kernel

- $x \mapsto Q(x, A)$  is  $\mathcal{B}(\mathcal{X})$ -measurable, for every  $A \in \mathcal{B}(\mathcal{X})$ ,
- $A \mapsto Q(x, A)$  is a probability on  $\mathcal{B}(\mathcal{X})$ , for every  $x \in \mathcal{X}$ .

This framework is general enough to cover:

- Discretizations of homogeneous Itô-diffusions,
- Time series models with dependence,
- and much more.

# Markov chains – a different view

## Random dynamical system representation

- Any general-state Markov process can be represented as

$$X_{n+1} = f(X_n, \xi_{n+1}),$$

- where  $(\xi_n)_{n \geq 1}$  is an i.i.d. noise sequence.
- The representation is not unique: different maps  $f$  may lead to the same transition kernel.

### Example:

Let  $\{(A_n, B_n)\}$  be an i.i.d. sequence with

$$X_{n+1} = A_{n+1}X_n + B_{n+1}$$

$$\mathbb{P}((A_0, B_0) = (a_i, b_i)) = w_i, \quad i = 1, 2,$$

where  $w_1 = 0.2993$ ,  $w_2 = 1 - w_1$ .

$$a_1 = \begin{bmatrix} 0.4 & -0.3733 \\ 0.06 & 0.6 \end{bmatrix}, \quad b_1 = \begin{bmatrix} 0.3533 \\ 0 \end{bmatrix}$$

$$a_2 = \begin{bmatrix} -0.8 & -0.1867 \\ 0.1371 & 0.8 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 1.1 \\ 0.1 \end{bmatrix}$$

## Markov chains in random environments – Definition

Let  $\mathcal{Y}$  be a complete separable metric space and  $(Y_n)_{n \in I}$ ,  $I = \mathbb{N}, \mathbb{Z}$ , a  $\mathcal{Y}$ -valued stochastic process. We say that the  $\mathcal{X}$ -valued process  $(X_n)_{n \in I}$  is a **Markov chain in the random environment**  $(Y_n)_{n \in I}$  if

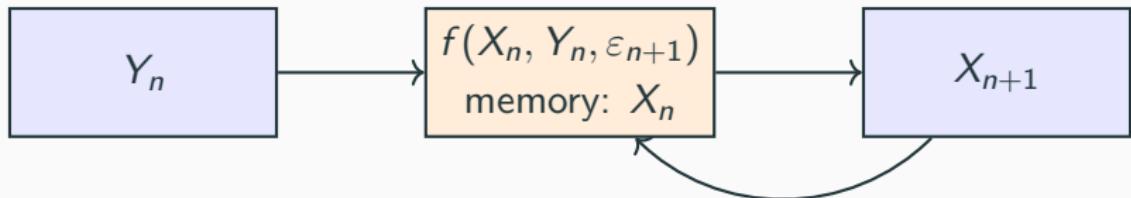
$$\mathbb{P}(X_{n+1} \in A \mid (X_k)_{k \leq n}, (Y_k)_{k \in I}) = Q(Y_n, X_n, A), \quad A \in \mathcal{B}(\mathcal{X}).$$

The parametric kernel  $Q : \mathcal{Y} \times \mathcal{X} \times \mathcal{B}(\mathcal{X}) \rightarrow [0, 1]$  satisfies:

- For each fixed  $A \in \mathcal{B}(\mathcal{X})$ ,  $(y, x) \mapsto Q(y, x, A)$  is  $\mathcal{B}(\mathcal{Y}) \otimes \mathcal{B}(\mathcal{X})$ -measurable.
- For each  $(y, x) \in \mathcal{Y} \times \mathcal{X}$ ,  $A \mapsto Q(y, x, A)$  is a probability measure on  $\mathcal{B}(\mathcal{X})$ .

**Intuitive meaning:** If we freeze one trajectory of the environment  $(Y_n)$ , then  $(X_n)$  behaves like a **time-inhomogeneous Markov chain**.

## MCREs as random iterative models



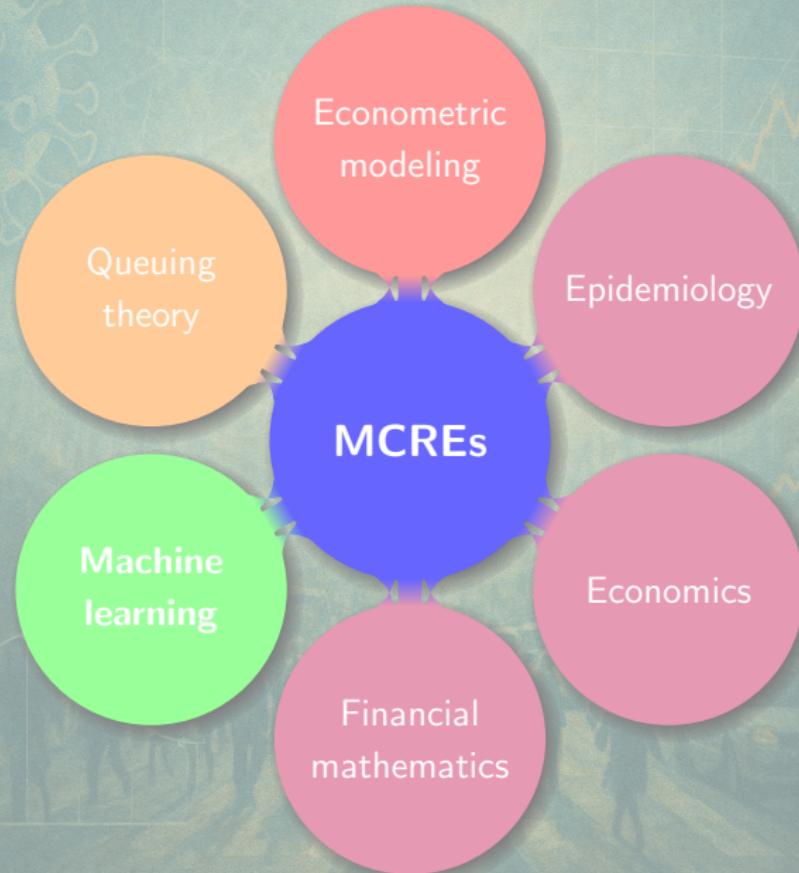
**Strict exogeneity condition:**  $(\varepsilon_n)_{n \geq 1}$  i.i.d., independent of the environment. No feedback exists between  $(\varepsilon_n)_{n \geq 1}$  and  $(Y_n)_{n \in \mathbb{N}}$ .

- Mathematical model of online data processing.
- Environment  $(Y_n)_{n \in I}$  can be:
  - Exogenous regressor
  - Data stream

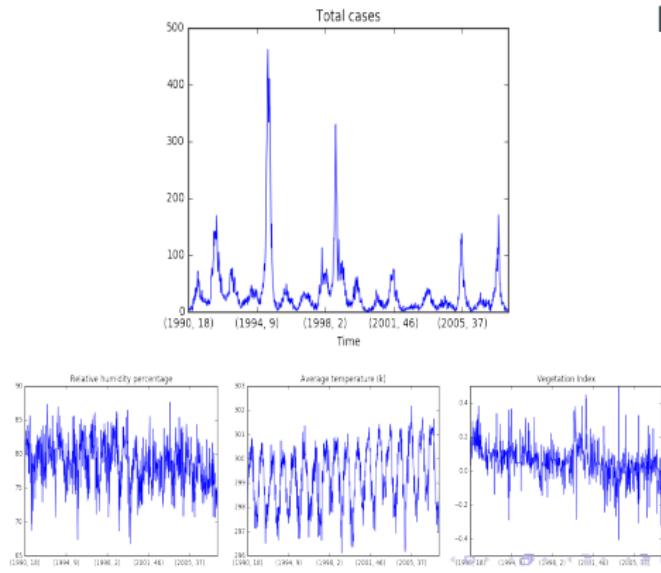
**Sequential exogeneity / predetermination:**  $\varepsilon_n$  independent of past  $(Y_{n-j}, \varepsilon_{n-j})_{j \geq 1}$ , may influence  $Y_n$ .

- Useful for more realistic econometric models.
- Not covered in this talk.

# Applications of MCREs across fields



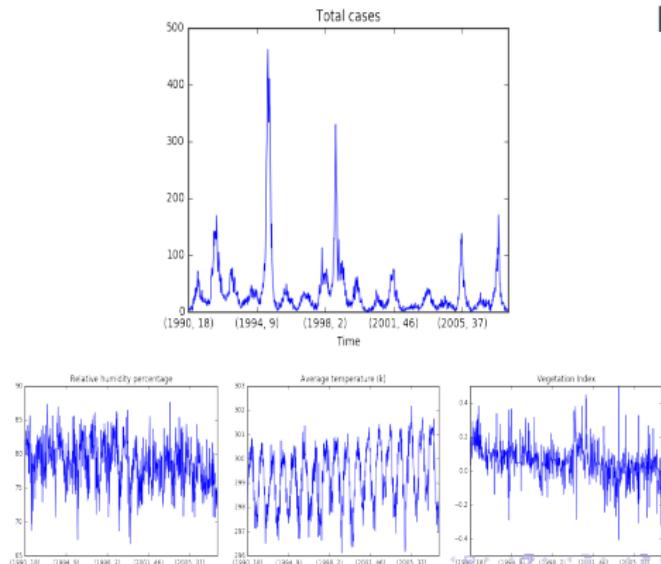
# Epidemiology: Weekly dengue fever cases in San Juan



Exogenous regressors:

- **Relative humidity:** Moisture conditions affecting mosquitoes.
- **Average temperature:** Influences breeding and virus spread.
- **Vegetation index:** Habitat quality; dense vegetation provides breeding grounds.

# Epidemiology: Weekly dengue fever cases in San Juan



Exogenous regressors:

- **Relative humidity:** Moisture conditions affecting mosquitoes.
- **Average temperature:** Influences breeding and virus spread.
- **Vegetation index:** Habitat quality; dense vegetation provides breeding grounds.

Current questions:

- Can we estimate the parametric kernel  $Q$  directly from data?
- Is there a theoretical guarantee that this estimation procedure is correct?

Source: L. Truquet, "Time Series, Exogeneity and Random Environments."

# Economics: Theory of optimal economic growth

**Hypothetical economy:** Produces a single good that can be *consumed* or *invested*.

- Capital  $k_t$  and consumption  $c_t$
- Output:  $y_t = f(k_{t-1}, r_t)$ , with  $r_t$  as a productivity shock.

**Objective:**

$$\max_{\{c_t\}} \mathbb{E} \left[ \sum_{t=0}^{\infty} \delta^t u(c_t) \right] \quad \text{s.t. } y_t = f(k_{t-1}, r_t), \quad c_t + k_t \leq y_t$$

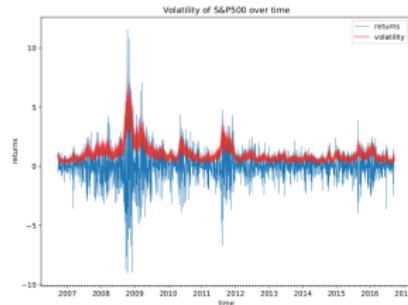
- $u(c)$ : instantaneous utility
- $\delta$ : discount factor

## Intriguing questions

- Does an optimal consumption strategy exist?
- Does the optimal strategy ensure **sustainable growth**, i.e., does the economy converge to a steady state with positive output and consumption in the long run?

# Financial mathematics: Stochastic volatility

In financial time series the volatility is time-varying (e.g. volatility clustering):



Stochastic volatility models treat volatility as a random process.

Discrete time model (Gerencsér–Rásonyi, 2021):

$$S_{n+1} = \gamma S_n + \rho e^{Z_n} \eta_{n+1} + \sqrt{1 - \rho^2} e^{Z_n} \varepsilon_{n+1}, \quad Z_n = \sum_{k=0}^{\infty} a_k \eta_{n-k},$$

where  $(\eta_n)_{n \in \mathbb{Z}}$ ,  $(\varepsilon_n)_{n \in \mathbb{Z}}$  are i.i.d. standard Gaussian, independent of each other,  $\sum a_k^2 < \infty$ .

- The price  $(S_n)_{n \in \mathbb{Z}}$  is conditionally Markov given the log-volatility process  $(Z_n)_{n \in \mathbb{Z}}$ .

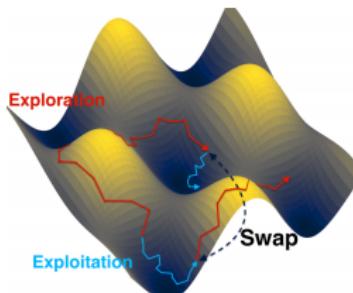
# Machine learning: the SGLD algorithm, (Welling & Teh, 2011)

- Given a dataset  $\mathcal{D}$  and parameter  $\theta$ , we aim to sample from

$$p(\theta | \mathcal{D}) \propto p(\mathcal{D} | \theta) p(\theta).$$

- Combine stochastic gradient descent (SGD) with Langevin dynamics to approximate samples from a posterior distribution.
  - Update rule (with step size  $\eta_t$ ):

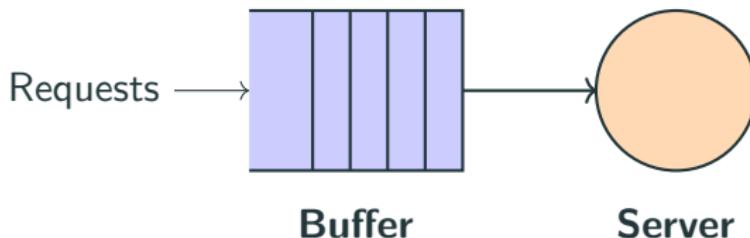
$$\theta_{n+1} = \theta_n - \lambda_n H(\theta_n, X_n) + \sqrt{2\lambda_n} \xi_{n+1},$$



where the gradient is replaced by a **stochastic estimate**:  $\nabla U(\theta) = \mathbb{E}[H(\theta, X_0)]$ ,  
 $U(\theta) = -\log p(\theta | \mathcal{D})$ ,  $\xi_n \sim \mathcal{N}(0, I)$ , i.i.d.

# Queuing theory

Single-server queuing system with an infinite buffer and a first-in, first-out (FIFO) service discipline:



The waiting times satisfy the *Lindley recursion*:

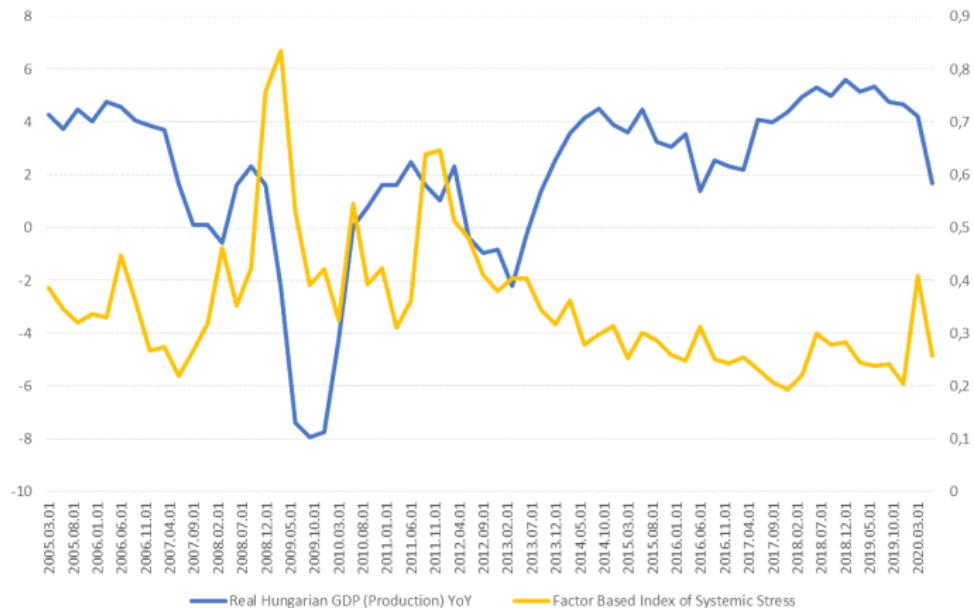
$$W_{n+1} = (W_n + S_n - Z_{n+1})_+, \quad n \in \mathbb{N},$$

with  $W_0 := 0$ , assuming an initially empty queue, where

- $Z_n$  denotes the time between the arrivals of the  $n$ -th and  $(n+1)$ -th customers,
- $S_n$  is the service time of the  $n$ -th customer.

# Econometric modeling: time series with exogenous regressors

Hungarian GDP and factor-based index of systematic stress (FISS):



Source: Katalin Varga – Central Bank of Hungary

## Questions relevant to practitioners

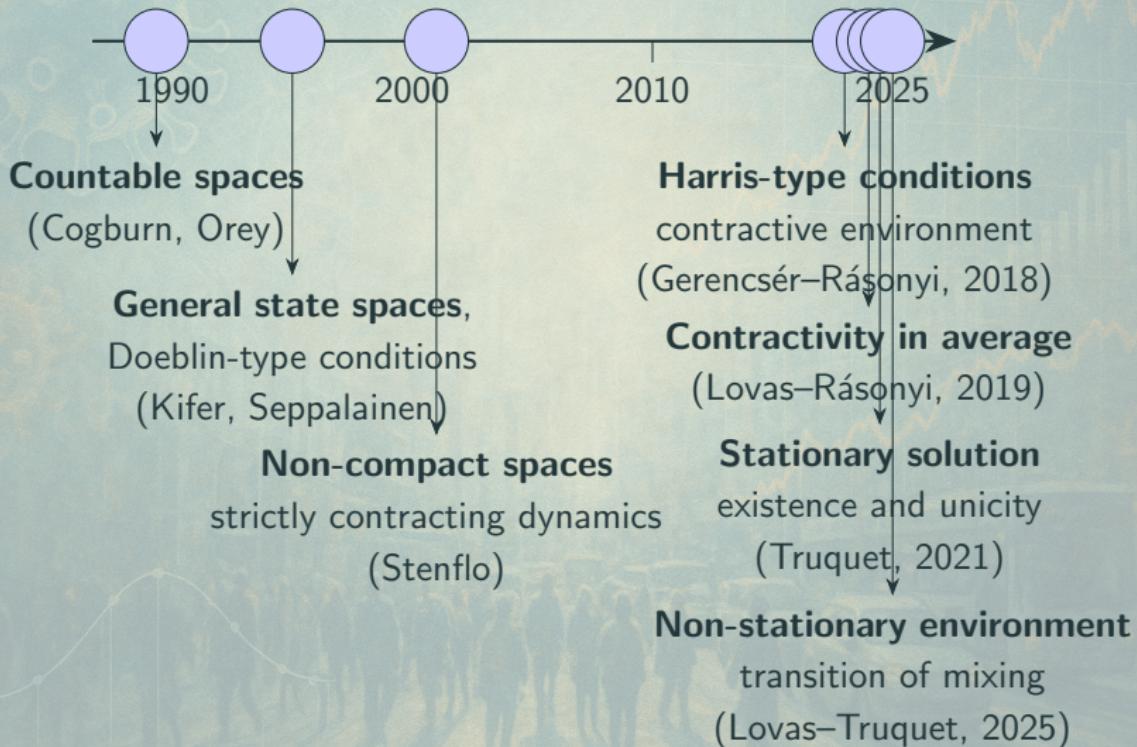
1. **Stability:** Does  $\text{Law}(X_n)$ ,  $n \in \mathbb{N}$ , converge in some metric to some limiting distribution?
2. **Ergodicity:** Under what conditions, and in what sense (strong, weak,  $L^p$ ), does the law of large numbers hold?
3. **Fluctuations:** Does a (functional) central limit theorem apply to the sequence of iterates?

- These questions highlight gaps in the statistical toolkit for nonlinear autoregressive models, where few established tools exist, particularly when the exogenous covariate sequence  $(Y_n)_{n \in \mathbb{N}}$  is not stationary.
- Our objective is to contribute to this area by developing theoretical tools to address these questions.

## Main theoretical results

---

# Main milestones of MCRE research



# Standard conditions and their role

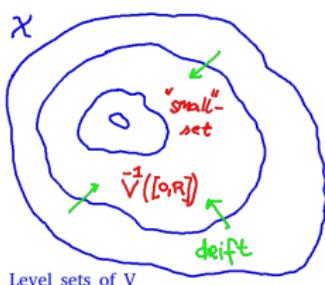
**Drift/Lyapunov condition:** there exists a function  $V : \mathcal{X} \rightarrow [0, \infty)$  and functions  $\gamma, K : \mathcal{Y} \rightarrow (0, \infty)$  such that

$$\int_{\mathcal{X}} V(z) Q(y, x, dz) \leq \gamma(y)V(x) + K(y), \quad (y, x) \in \mathcal{Y} \times \mathcal{X}.$$

- If  $\gamma(y) < 1$ , the dynamics are *contractive*.
- If  $\gamma(Y_n) < 1$  occurs sufficiently often\*, then the process  $X_n$  visits appropriate level sets of  $V$  frequently enough.

**Minorization/small set condition:** on  $V^{-1}([0, R])$

$$Q(y, x, A) \geq (1 - \beta(R, y))\kappa_R(y, A), \quad y \in \mathcal{Y}, A \in \mathcal{B}(\mathcal{X}).$$



- On level sets of  $V$ , the process has a positive probability of "forgetting" its past at each step.
- The larger  $1 - \beta(R, y)$  is, the stronger this effect\*\*.

+ additional assumptions to ensure \* and \*\*.

# Markov Chains in stationary random environment

**Theorem (Lovas-Rásónyi, 2019)** Under the *long-term contractivity condition*

$$\limsup_{n \rightarrow \infty} \mathbb{E}^{1/n} \left( K(Y_0) \prod_{k=1}^n \gamma(Y_k) \right) < 1,$$

along with additional technical conditions, we have:

- Convergence in total variation:

$$\text{Law}(X_n) \xrightarrow{d_{\text{TV}}} \mu_* \quad \text{as} \quad n \rightarrow \infty,$$

with an explicit rate of order  $O(c_1 e^{-c_2 n^{1/3}})$ .

- If  $(Y_n)_{n \in \mathbb{Z}}$  is also ergodic, then for any bounded measurable function  $\Phi : \mathcal{X} \rightarrow \mathbb{R}$  and  $1 \leq p < \infty$ ,

$$\frac{1}{n} \sum_{k=1}^n \Phi(X_k) \xrightarrow{L^p} \int_{\mathcal{X}} \Phi(z) \mu_*(dz).$$

The proof relies on an L-mixing result by L. Gerencsér.

## Existence and uniqueness of a stationary solution

**Theorem (L. Truquet, 2021):** Given a stationary process  $(Y_n)_{n \in \mathbb{Z}}$  and the conditions

$$\mathbb{E} [\log(\gamma(Y_0))_+] + \mathbb{E} [\log(K(Y_0))_+] < \infty, \quad \mathbb{E} [\log(\gamma(Y_0))] < 0,$$

there exists a Markov chain in random environment  $(X_n^*)_{n \in \mathbb{Z}}$  such that:

- The process  $((Y_t, X_t^*))_{t \in \mathbb{Z}}$  is stationary with a unique invariant distribution.
- If  $(Y_t)_{t \in \mathbb{Z}}$  is ergodic, then  $((Y_t, X_t^*))_{t \in \mathbb{Z}}$  is also ergodic.

Truquet also showed that

$$\text{Law}(X_n) \xrightarrow{d_{\text{TV}}} \text{Law}(X_0^*) \quad \text{as} \quad n \rightarrow \infty$$

when  $X_0 = x_0$  is deterministic, though without providing an explicit rate of convergence.

## $\alpha$ -mixing processes (Rosenblatt, 1956)

For any sequence of random variables  $(W_t)_{t \in \mathbb{Z}}$ , we define:

- $\mathcal{F}_{t,s}^W := \sigma(W_k, t \leq k \leq s)$  for  $-\infty \leq t \leq s \leq \infty$ .
- The mixing coefficient  $\alpha_j^W(n)$  is defined as:

$$\alpha_j^W(n) = \sup \left\{ |\mathbb{P}(G \cap H) - \mathbb{P}(G)\mathbb{P}(H)| \mid F \in \mathcal{F}_{-\infty,j}^W, G \in \mathcal{F}_{j+n,\infty}^W \right\}.$$

- The overall mixing coefficient of the process  $W$  is given by  $\alpha^W(n) = \sup_{j \in \mathbb{Z}} \alpha_j^W(n)$ .
- The sequence  $(\alpha^W(n))_{n \in \mathbb{N}}$  is non-increasing and measures the independence of events occurring at distant times.

**Remark:** Several mixing concepts exist, such as  $\phi$ ,  $\psi$ , and  $\rho$ . Among these the classical mixing concepts,  $\alpha$ -mixing is the weakest.

## $\alpha$ -mixing (continued)

The decay rate of  $\alpha^W(n)$  is quantified by the summability criterion:

$$\sum_{n=1}^{\infty} [\alpha^W(n)]^{1/\kappa} < \infty \quad \text{for some } \kappa > 0.$$

**Size:**  $(W_n)_{n \in \mathbb{N}}$  is said to be  $\alpha$ -mixing of size  $-\kappa_0$  if

$$\alpha^W(n) = O(n^{-\kappa}) \quad \text{for some } \kappa > \kappa_0.$$

A process  $W$  is **strongly mixing** if

$$\lim_{n \rightarrow \infty} \alpha^W(n) = 0.$$

**Folklore:** Stationarity + strong mixing  $\Rightarrow$  ergodicity  $\Rightarrow$  strong law of large numbers.

Many powerful theoretical results are available for  $\alpha$ -mixing sequences.

## Law of large numbers for $\alpha$ -mixing sequences

**Theorem (McLeish, 1975):** Let  $(W_n)_{n \in \mathbb{N}}$  be a process with finite means  $\mu_n = \mathbb{E}[W_n]$  and with  $(\alpha(n))_{n \in \mathbb{N}}$  of size  $-r/(r-2)$  for  $r > 2$ .

Furthermore, assume that

$$\sum_{n=1}^{\infty} \left( \frac{\mathbb{E} |W_n - \mu_n|^p}{n^p} \right)^{2/r} < \infty \quad (1)$$

for some  $p$  such that  $r/2 < p \leq r < \infty$ . Under these conditions,

$$\frac{1}{n} \sum_{k=1}^n (W_k - \mu_k) \rightarrow 0 \quad \text{a.s. as } n \rightarrow \infty.$$

**Remark:** In the models we study, it holds that

$$\sup_{n \in \mathbb{N}} \mathbb{E} |W_n - \mu_n|^p < \infty,$$

so condition (1) is evidently satisfied.

## Law of large numbers for $\alpha$ -mixing sequences (continued)

**Theorem (Hansen, 2019):** Consider a strongly mixing  $\mathbb{R}$ -valued process  $(W_n)_{n \in \mathbb{N}}$ , and define the sequence of partial sums  $S_n := \sum_{k=1}^n W_k$  for  $n \geq 1$ . Additionally, suppose that the following uniform integrability condition holds:

$$\lim_{B \rightarrow \infty} \sup_{n \geq 1} \frac{1}{n} \sum_{k=1}^n \mathbb{E}(|W_n| \mathbf{1}(|W_n| \geq B)) = 0. \quad (2)$$

Then, we have

$$\frac{S_n}{n} - \frac{\mathbb{E}(S_n)}{n} \xrightarrow{L^1} 0, \quad n \rightarrow \infty.$$

**Remark:** The average uniform integrability condition (2) is satisfied if the process  $(W_n)_{n \in \mathbb{N}}$  has a uniformly bounded moment, i.e.,  $\sup_{n \in \mathbb{N}} \mathbb{E}(|W_n|^r) < \infty$  for some  $r > 1$ .

## A recent CLT-like result for $\alpha$ -mixing variables

**Theorem (Ekström, 2014):** Let  $\{\xi_{n,i} \mid 1 \leq i \leq d_n, n \in \mathbb{N}\}$  be an array of  $\mathbb{R}$ -valued random variables with  $\mathbb{E}\xi_{n,i} = 0$ .

Define  $S_n = \sum_{k=1}^{d_n} \xi_{n,k}$  for  $n \in \mathbb{N}$ , and assume:

- i.  $\sup_{n \in \mathbb{N}} \max_{1 \leq i \leq d_n} \mathbb{E}|\xi_{n,i}|^{2+r} < \infty$  for some  $r > 0$ ,
- ii.  $\sup_{n \in \mathbb{N}} \sum_{k=0}^{\infty} (k+1)^2 (\alpha^{\xi_n, \cdot}(k))^{\frac{r}{4+r}} < \infty$ ,

where  $\alpha^{\xi_n, \cdot}(\cdot)$  is the strong mixing coefficient for the  $n$ th row.

Then, the distributions  $\text{Law}(d_n^{-1/2} S_n)$  and  $\mathcal{N}(0, \text{Var}(d_n^{-1/2} S_n))$  are *weakly approaching* i.e.

$$\mathbb{E} \left[ g \left( d_n^{-1/2} S_n \right) \right] - \int_{\mathbb{R}} g \left( \text{Var}(d_n^{-1/2} S_n)^{1/2} t \right) \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt \rightarrow 0 \quad \text{as } n \rightarrow \infty$$

for any bounded continuous function  $g : \mathbb{R} \rightarrow \mathbb{R}$ .

## A CLT for $\alpha$ -mixing sequences

**Theorem (White, 2001):** Let  $\{X_{tn}\}$  be a triangular array of scalars with means  $\mu_{tn} = \mathbb{E}[X_{tn}]$  and variances  $\sigma_{tn}^2 = \text{Var}(X_{tn})$  such that

$$\sup_{t,n} \mathbb{E}|X_{tn}|^r < \infty$$

for some  $r \geq 2$ . Suppose that  $\{X_{tn}\}$  has  $\alpha$ -mixing coefficient of size  $-r/(r-2)$  for  $r > 2$ . Furthermore, assume that

$$\bar{\sigma}_n^2 = \text{Var} \left( \frac{1}{\sqrt{n}} \sum_{t=1}^n X_{tn} \right) \geq \delta > 0$$

for all sufficiently large  $n$ . Under these conditions, as  $n \rightarrow \infty$ ,

$$\frac{\sqrt{n}}{\bar{\sigma}_n} (\bar{X}_n - \bar{\mu}_n) \xrightarrow{d} N(0, 1),$$

where

$$\bar{X}_n = \frac{1}{n} \sum_{t=1}^n X_{tn} \quad \text{and} \quad \bar{\mu}_n = \frac{1}{n} \sum_{t=1}^n \mu_{tn}.$$

## Functional CLT for $\alpha$ -mixing sequences

In non-stationary cases, a major challenge is that  $\text{Var}(S_n)$  can diverge at an arbitrary nonlinear rate, complicating the analysis.

**Herrndorf (1984):** If  $\mathbb{E}(W_n) = 0$ ,  $\sup_{n \in \mathbb{N}} \mathbb{E}(W_n^{2+\epsilon}) < \infty$ ,  $\mathbb{E}(S_n^2)/n \rightarrow \sigma \geq 0$  as  $n \rightarrow \infty$ , and  $\alpha^W(n) \rightarrow 0$  “sufficiently fast,” then a functional CLT holds.

**Note:** By assuming  $\mathbb{E}(S_n^2)/n \rightarrow \sigma \geq 0$  as  $n \rightarrow \infty$ , the variance issue is circumvented. However, this result has been valuable in later research.

## Functional CLT for $\alpha$ -mixing sequences

In non-stationary cases, a major challenge is that  $\text{Var}(S_n)$  can diverge at an arbitrary nonlinear rate, complicating the analysis.

**Herrndorf (1984):** If  $\mathbb{E}(W_n) = 0$ ,  $\sup_{n \in \mathbb{N}} \mathbb{E}(W_n^{2+\epsilon}) < \infty$ ,  $\mathbb{E}(S_n^2)/n \rightarrow \sigma \geq 0$  as  $n \rightarrow \infty$ , and  $\alpha^W(n) \rightarrow 0$  “sufficiently fast,” then a functional CLT holds.

**Note:** By assuming  $\mathbb{E}(S_n^2)/n \rightarrow \sigma \geq 0$  as  $n \rightarrow \infty$ , the variance issue is circumvented. However, this result has been valuable in later research.

**Merlevède, Peligrad, and Utev (2019):** Functional CLT for random variables  $\{\xi_{k,n} \mid k \leq n\}$  satisfying the Lindeberg condition. In addition to  $\sup_m \alpha^{\xi_{\cdot,m}}(n) \rightarrow 0$  sufficiently fast, they required:

$$\sum_{j=1}^n \text{Var}(\xi_{j,n}) = O(\text{Var}(S_n)).$$

## Functional CLT for $\alpha$ -mixing sequences

In non-stationary cases, a major challenge is that  $\text{Var}(S_n)$  can diverge at an arbitrary nonlinear rate, complicating the analysis.

**Herrndorf (1984):** If  $\mathbb{E}(W_n) = 0$ ,  $\sup_{n \in \mathbb{N}} \mathbb{E}(W_n^{2+\epsilon}) < \infty$ ,  $\mathbb{E}(S_n^2)/n \rightarrow \sigma \geq 0$  as  $n \rightarrow \infty$ , and  $\alpha^W(n) \rightarrow 0$  “sufficiently fast,” then a functional CLT holds.

**Note:** By assuming  $\mathbb{E}(S_n^2)/n \rightarrow \sigma \geq 0$  as  $n \rightarrow \infty$ , the variance issue is circumvented. However, this result has been valuable in later research.

**Merlevède, Peligrad, and Utev (2019):** Functional CLT for random variables  $\{\xi_{k,n} \mid k \leq n\}$  satisfying the Lindeberg condition. In addition to  $\sup_m \alpha^{\xi_{\cdot,m}}(n) \rightarrow 0$  sufficiently fast, they required:

$$\sum_{j=1}^n \text{Var}(\xi_{j,n}) = O(\text{Var}(S_n)).$$

For suitable functionals of MCREs, proving the  $\geq$  direction is straightforward, while proving  $\leq$  required novel techniques.

## Main assumptions

We assume that the parametric kernel  $Q$  satisfies the **drift** and **minorization** conditions, such that the following hold:

**A1**

$$r_0 := \sum_{\ell \geq 0} d_\ell < \infty, \quad d_0 = \sup_{t \geq 0} \mathbb{E}[K(Y_t) + \gamma(Y_t)] < \infty,$$

$$d_\ell := \sup_{t \geq -1} \mathbb{E} \left[ K(Y_t) \prod_{i=1}^{\ell} \gamma(Y_{t+i}) \right], \quad \ell \geq 1.$$

**A2** For any  $R > 0$ ,

$$\lim_{\bar{\beta} \uparrow 1} \sup_{t \in \mathbb{N}} \mathbb{P}(\beta(R, Y_t) > \bar{\beta}) = 0.$$

Suppose that either  $X_0$  is independent from  $(Y_t)_{t \in \mathbb{Z}}$  with  $\mathbb{E}[V(X_0)] < \infty$  or  $((X_t, Y_t))_{t \in \mathbb{Z}}$  is a stationary process.

1. **Uniformly bounded moments:** Suppose that for some constant  $C > 0$  and exponent  $p > 1$ , we have

$$|\Phi(x)|^p \leq C(1 + V(x)).$$

Then,

$$\sup_{j \geq 0} \|\Phi(X_j)\|_p < \infty.$$

2. **Transition of mixing:** Set  $r_i = \sum_{\ell \geq i} d_\ell$  for some positive integer  $i$ . Then there exist  $\kappa \in (0, 1)$  and a positive constant  $c$  such that

$$\alpha^{X, Y}(n) \leq c \inf_{1 \leq i \leq q \leq n} \left\{ r_i + \kappa^{n/q} + \alpha^Y(q + 1 - i) \right\}.$$

The processes  $(W_n)_{n \in \mathbb{N}}$  and  $(W'_n)_{n \in \mathbb{N}}$  are said to be **forward coupled**, if there exists an almost surely finite random time  $\tau$  such that

$$W_n = W'_n, \quad n \geq \tau.$$

## Assumptions:

- Suppose that  $(Y_n)_{n \in \mathbb{Z}}$  is strongly stationary and  $\alpha$ -mixing.
- Let  $(X_n^*, Y_n)_{n \in \mathbb{Z}}$  denote the associated stationary process, and let  $X_0$  be a random initial state independent of  $(Y_n)_{n \in \mathbb{Z}}$ .

**Result:** There exist versions of  $(X_n)_{n \in \mathbb{N}}$  and  $(X_n^*)_{n \in \mathbb{N}}$  that are *forward coupled*. Furthermore, the following rate estimate holds:

$$\|\text{Law}(X_n) - \text{Law}(X_n^*)\|_{TV} \leq 2c \inf_{1 \leq i \leq q \leq n} \left\{ r_i + \kappa^{n/q} + \alpha^Y (q - i) \right\}$$

## Selected applications

---

# Machine learning

# Importance of optimization in learning

- Optimization is the standard tool for training machine learning models.
- A *loss function*  $U : \mathbb{R}^d \rightarrow \mathbb{R}$  measures the discrepancy between predictions and observed data.

## Training as an optimization problem

$$\theta^* = \arg \min_{\theta \in \mathbb{R}^d} U(\theta).$$

## Challenges

- $d$  is typically very large and  $U$  is often non-convex.
- Training deep neural networks involves optimizing trillions of parameters.
- $U$  may not be explicitly available — only  $\nabla U$  can be estimated from data.

# Pitfalls of gradient descent

## Gradient descent (GD):

$$\theta_{n+1} = \theta_n - \lambda \nabla U(\theta_n)$$

is the earliest and most common optimization method.

- $\lambda > 0$  is called step-size or learning rate depending on the context.

## Limitations:

- Computing gradients over the full dataset can be expensive (minibatch SGD mitigates this to some extent).
- GD can get stuck in local minima or saddle points, especially in non-convex, multimodal landscapes:

## Would adding some artificial noise at each step help?

The Langevin iteration:

$$\theta_{n+1} = \theta_n - \lambda \nabla U(\theta_n) + \sqrt{\frac{2\lambda}{\beta}} \xi_{n+1},$$

- $(\xi_n)_{n \geq 1}$  are i.i.d. standard Gaussian variables,
- $\beta > 0$  is the inverse temperature parameter.

# How Langevin iteration actually works?

The Langevin SDE:

$$d\theta_t = -\nabla U(\theta_t)dt + \beta^{-1/2}dB_t,$$

where  $(B_t)_{t \geq 0}$  is a standard Brownian motion.

**Convergence to unique invariant distribution:**

$$\text{Law}(\theta_t) \rightarrow \pi_\beta, \quad \pi_\beta(dx) \propto e^{-\beta U(x)} dx.$$

For large  $\beta$ ,  $\pi_\beta$  concentrates to the global minimum  $x^*$ .

Error analysis:

- $\text{Law}(\theta_n) \rightarrow \pi_{\beta, \lambda}$  exponentially fast;
- $\pi_{\beta, \lambda}$  differs from  $\pi_\beta$ :  $d_{W^1}(\pi_\beta, \pi_{\beta, \lambda}) = O(\sqrt{\lambda})$ .

## When only an unbiased estimate of $\nabla U$ is available

### Stochastic Gradient Langevin Dynamics (SGLD):

$$\theta_{n+1} = \theta_n - \lambda H(\theta_n, X_n) + \sqrt{\frac{2\lambda}{\beta}} \xi_{n+1},$$

where

- $(X_n)_{n \in \mathbb{N}}$  is an  $\mathbb{R}^m$ -valued stationary process, interpreted as data stream;
- $H : \mathbb{R}^d \times \mathbb{R}^m \rightarrow \mathbb{R}^d$  measurable function, the stochastic gradient of  $U$  i.e.  $\nabla U(\theta) = \mathbb{E}[H(\theta, X_0)]$ ,  $\theta \in \mathbb{R}^d$ .

### What we already know?

- The case when  $(X_n)_{n \in \mathbb{N}}$  is i.i.d. has been thoroughly studied. In this setting,  $(\theta_n)_{n \in \mathbb{N}}$  forms a Markov chain.
- Our focus is on the more challenging situation where  $(X_n)_{n \in \mathbb{N}}$  may even be **non-stationary**.

## Assumptions on the update function and the data stream

### Assumptions on $H$ :

- Dissipativity: there are measurable  $\Delta, b : \mathbb{R}^m \rightarrow \mathbb{R}$  and  $v : \mathbb{R}^m \rightarrow [0, \infty)$  such that for all  $\theta \in \mathbb{R}^d$  and  $x \in \mathbb{R}^m$ ,

$$\langle \theta, H(\theta, x) \rangle \geq \Delta(x) \|\theta\|^2 - b(x).$$

- At most linear growth: for some  $L > 0$

$$\|H(\theta, x)\| \leq L(\|\theta\| + v(x) + 1), \quad \theta \in \mathbb{R}^d, x \in \mathbb{R}^m.$$

### Assumptions on $(X_n)_{n \in \mathbb{N}}$ :

- There exists  $\delta \in (0, 1)$  such that

$$\sup_{n \in \mathbb{N}} \mathbb{E} \left[ v(X_n)^{2\delta} + |b(X_n)|^\delta \right] < \infty.$$

- $\tilde{\Delta} := \inf_{n \in \mathbb{N}} \mathbb{E}[\Delta(X_n)] > 0$ .

## The main theorem on SGLD (Lovas–Truquet, 2025)

Assume that there exists  $M > 0$  such that for all  $t > 0$  and  $n \geq 1$ ,

$$\sup_{j \in \mathbb{N}} \mathbb{P} \left( \sum_{k=1}^n \log \gamma(X_{k+j}) > t + \sum_{k=1}^n \mathbb{E}[\log \gamma(X_{k+j})] \right) \leq \exp \left( -\frac{t^2}{Mn} \right),$$

where

$$\gamma(x) = 3L^2\lambda^2 - 2\lambda\Delta(x) + 1.$$

Then for step size  $0 < \lambda < \frac{2\tilde{\Delta}}{3L^2}$ , the following holds:

- There exists  $s \in (0, 1)$  such that for any  $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}$  satisfying  $|\Phi(\theta)|^p \leq C(1 + \|\theta\|^{2s})$  for some  $C > 0$  and  $p \geq 1$ , we have

$$\sup_{n \in \mathbb{N}} \mathbb{E}[|\Phi(\theta_n)|^p] < \infty.$$

- If  $\alpha^X(n) = O(n^{-a})$  for some  $a > 1$ , then  $\alpha^\theta(n) = O\left(\frac{\log^a(n)}{n^a}\right)$ . If  $\alpha^X(n) = O(\kappa^n)$  for some  $\kappa \in (0, 1)$ , then there exists  $\bar{\kappa} \in (0, 1)$  such that  $\alpha^\theta(n) = O(\bar{\kappa}^{\sqrt{n}})$ .

# Queuing systems

# The queuing model

Recall the Lindley's recursion:

$$W_{n+1} = (W_n + S_n - Z_{n+1})_+, \quad n \in \mathbb{N},$$

with  $W_0 = 0$  (initially empty queue), where

- $Z_n$  = inter-arrival time between the  $n$ -th and  $(n+1)$ -th customers,
- $S_n$  = service time of the  $n$ -th customer.

## Loynes' classical results (1962)

Assuming the sequence  $\{(S_n, Z_{n+1})\}_{n \in \mathbb{Z}}$  is stationary and ergodic:

- **Subcritical case:**  $\mathbb{E}[S_0] < \mathbb{E}[Z_1] \Rightarrow$  the queue is **stable**.
- **Supercritical case:**  $\mathbb{E}[S_0] > \mathbb{E}[Z_1] \Rightarrow$  the queue is **unstable**.
- **Critical case:**  $\mathbb{E}[S_0] = \mathbb{E}[Z_1] \Rightarrow$  the queue may be **stable**, **substable**, or **unstable**.

## Theorem (Györfi–Morvai, 1999)

Assume  $\{(S_n, Z_{n+1})\}_{n \in \mathbb{Z}}$  is stationary and ergodic, and the system is **subcritical**:

$$\mathbb{E}[S_0] < \mathbb{E}[Z_1].$$

Then  $(W_n)_{n \in \mathbb{N}}$  is **forward coupled with** a stationary and ergodic  $(W'_n)_{n \in \mathbb{Z}}$ , where

$$W'_0 = \sup_{n \in \mathbb{N}} Y_n, \quad Y_n = \sum_{k=1}^n (S_{-k} - Z_{-k+1}), \quad Y_0 = 0.$$

**Rate estimate:**

$$\|\text{Law}(W_n) - \text{Law}(W'_0)\|_{TV} \leq \mathbb{P} \left( \min_{0 < k < n} \sum_{j=1}^k (S_j - Z_{j+1}) > \max(W_1, W'_0 + S_0 - Z_1) \right).$$

This bound is **not informative** in practice and of little use for applications.

**Assumptions:** Let  $(S_n)_{n \in \mathbb{Z}}$  be stationary, bounded, and independent of i.i.d.  $(Z_n)$ .

- The system is subcritical  $\mathbb{E}[S_0] < \mathbb{E}[Z_1]$ .
- Log-moment generating function

$$\Gamma(t) = \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E} e^{t(S_1 + \dots + S_n)}$$

exists and is differentiable near 0.

- $\mathbb{P}(Z_0 \geq \tau) > 0$  for a suitable threshold  $\tau$ .

**Result:** There exists a stationary  $(S_n, W_n^*)_{n \in \mathbb{Z}}$  satisfying the Lindley recursion such that

- Processes  $(W_n)$  and  $(W_n^*)$  are forward coupled,
- for some  $\kappa \in (0, 1)$ ,

$$\|\text{Law}(W_n) - \text{Law}(W_n^*)\|_{TV} = O(\kappa^{1/2}).$$

## Non-stationary service times (Lovas, 2024)

Under some additional technical assumptions:

A) If  $(S_n)$  is **strongly mixing**, then

$$\frac{1}{n} \sum_{k=1}^n (W_k - \mathbb{E}[W_k]) \xrightarrow{L^1} 0.$$

B) If  $\alpha^S(n) \leq cn^{-\kappa}$  with  $\kappa > 1$ , then

$$\frac{1}{n} \sum_{k=1}^n (W_k - \mathbb{E}[W_k]) \xrightarrow{\text{a.s.}} 0.$$

C) If  $\sum_n (n+1)^2 \alpha^S(n)^\delta < \infty$  for some  $\delta \in (0, 1)$ , then a

**CLT-type bound** holds:

$$\limsup_{n \rightarrow \infty} \mathbb{P} \left( \frac{1}{\sqrt{n}} \left| \sum_{k=1}^n (W_k - \mathbb{E}W_k) \right| \geq a \right) \leq \mathbb{P}(\sigma \xi \geq a),$$

for some  $\sigma > 0$  with  $\xi \sim \mathcal{N}(0, 1)$ .

# Invariance principle for queues (Lovas, 2024)

## Assumptions:

- Arrival density  $f_{Z_1}$  satisfying  $\int_0^\infty \frac{f'_{Z_1}(z)^2}{f_{Z_1}(z)} dz < \infty$ .
- Queue stability condition:  $\liminf_{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{P}(S_k > Z_1)^2 > 0$ .
- Mixing: for some  $\delta > 0$ ,  $\sum_{n \geq 1} n^\delta \alpha^S(n) < \infty$ .

**Result:** Define  $\Sigma_n = \sum_{k=1}^n W_k$ ,  $\xi_{k,n} = \frac{W_k - \mathbb{E}[W_k]}{\sqrt{\text{Var}(\Sigma_n)}}$ , and

$$v_n(t) = \min\{1 \leq k \leq n \mid \text{Var}(\Sigma_k) \geq t \text{Var}(\Sigma_n)\}.$$

Then the partial-sum process

$$B_n(t) = \sum_{k=1}^{v_n(t)} \xi_{k,n}, \quad t \in (0, 1],$$

converges in distribution (in  $D([0, 1])$  with uniform topology) to a **standard Brownian motion**.

# Econometrics

## A simple VAR-X model

Let  $Y_n \in \mathbb{R}^d$ ,  $n \in \mathbb{N}$  be an exogenous process. We consider the process  $X_n \in \mathbb{R}^d$  obeying the linear dynamics

$$X_{n+1} = AX_n + BY_n + \varepsilon_{n+1}, \quad (3)$$

where

- $A$  and  $B$  are fixed  $d \times d$  matrices such that the spectral radius of  $A$  satisfies  $r(A) < 1$ ;
- $(\varepsilon_n)_{n \geq 1}$  is i.i.d. independent of  $(Y_n)_{n \in \mathbb{N}}$ ;
- $\mathbb{E}[|\varepsilon_0|] < \infty$ ,  $\text{Law}(\varepsilon_0)$  is absolutely continuous with respect to the Lebesgue measure, with density bounded away from zero on compact sets;
- $X_0$  and  $(\varepsilon_n)_{n \geq 1}$  are conditionally independent given  $Y$ .

## Theorem (Lovas–Truquet, 2025)

Under our standing assumptions, if

$$\sup_{n \in \mathbb{N}} \mathbb{E}[\|Y_n\|] < \infty,$$

then there exist constants  $c'' > 0$  and  $r \in (0, 1)$  such that

$$\alpha^{X,Y}(n) \leq c'' \left[ r^{n^{1/2}} + \alpha^Y(\lfloor n^{1/2}/2 \rfloor) \right].$$

Moreover, for any function  $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}$  satisfying

$$|\Phi(x)| \leq c'(1 + \|x\|),$$

for some  $c' > 0$ , the moments are uniformly bounded:

$$\sup_{n \in \mathbb{N}} \mathbb{E}[|\Phi(X_n)|] < \infty.$$

**Corollary:** All classical results available for mixing processes also apply here:

- Law of Large Numbers (LLN), construction of confidence intervals, concentration inequalities, and beyond.

## Future research and challenges

---

# Future research and challenges

## Theory:

- Refine existing results on the *transition of  $\alpha$ -mixing*.
- Establish transfer of mixing properties under **monotonicity conditions** on the parametric kernel → essential for applications in *stochastic optimal economic growth*.
- Extend the theory to **sequentially exogenous** random iterative models, motivated by econometrics.

## Applications:

- Advanced queuing models (multi-server systems, finite buffer capacity, diverse service disciplines).
- Convergence analysis of Monte Carlo algorithms on data streams.
- Structural design of polymers.

Thank you for your attention!

**Questions?**

## Bibliography

---

## References

-  B. GERENCSÉR AND M. RÁSONYI, *On the ergodicity of certain Markov chains in random environments*, Journal of Theoretical Probability, 36 (2023), pp. 2093–2125.
-  A. LOVAS AND L. TRUQUET, *Mixing properties of some Markov chains models in random environments*, arXiv preprint arXiv:2509.16118, (2025).
-  A. LOVAS, *Transition of  $\alpha$ -mixing in Random Iterations with Applications in Queuing Theory*, arXiv preprint arXiv:2410.05056, (2024).
-  A. LOVAS AND M. RÁSONYI, *Markov chains in random environment with applications in queuing theory and machine learning*, Stochastic Processes and their Applications, 137 (2021), pp. 294–326.