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Energy efficient computing?

9,000 terawatt hours (TWh)

—  ENERGY FORECAST 20.9% of projected 4
Widely cited forecasts suggest that the electricity demand
total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres will take a larger slice.
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The chart above is an ‘expected case’ projection from Anders Andrae, a

specialist in sustainable ICT. In his ‘best case’ scenario, ICT grows to only
8% of total electricity demand by 2030, rather than to 21%.
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INTERNET EXPLOSION

Internet traffic* is growing
exponentially, and reached more
than a zettabyte (ZB, 1 x 10?! bytes)
in 2017.

Separate memory and processor In memory computing
e s GOES 1128 “Edge computing” with
General hardware + software targeted hardware

*Traffic to and from data centres.
ITB, terabyte (10'2bytes); PB, petabyte (10'° bytes); EB, exabyte (10 bytes). onature



Biological and artificial neurons
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Memristors as artificial synapses
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Memristive artificial synapses

How fast?

How many?

How small? Down to single atom!

NANO LETTERS 20, 1192 (2020)
ACS APPL. NANO MAT. 6, 21340 (2023)

Down to 15ps

switching!
ADV. ELEC. MATERIALS 9 2201104 (2023
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Memristive neural networks A A /\ ‘§>
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Efficient and self-adaptive in-situ learning in multilayer
memristor neural networks NATURE COMM. 9:2385 (2018)
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Benchmarking Stochasticity Behind Reproducibility:

Denoising Strategies In Memristive Filaments

Subthreshold
manipulation of R,
fluctuations
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ACS APPL MATERIALS &
INTERFACES 17, 25654 (2025)



Noise tailoring, noise annealing and external
perturbation injection strategies in memristive
Hopfield neural networks

J.G. Fehérvari et al., Noise tailoring, noise annealing and external
perturbation injection strategies in memristive Hopfield neural
networks, APL MACHINE LEARNING 2 016107 (2024)
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Temporal Signal Recognition and
Time Series Prediction with Dynamical
Memristors
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network complexity - dynamical complexity

D. Molnar et al., Neural information processing and
time-series prediction with only two dynamical
memristors, Adv. Electron. Mater. 2025, e00353



VO, Mott
memristor

VO, memristor — artificial neuron
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Switching focused to

30nm active region
ACS APPLIED NANO MATERIALS 6, 9137 (2023)

Down to 15ps

switching!
ACS NANO 18 21966 (2024)
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“23 biological neuron spiking
behaviors experimentally
demonstrated in VO, active

memristor neurons”
Yi et al. NATURE COMM 9,

4661 (2018)
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Oscillating neural networks from VO, memristors
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Maher et el., CMOS-compatible oscillation-
based VO, Ising machine solver,
NATURE COMMUNICATIONS 15, 3334 (2024)
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Development of ultrafast VO, oscillator circuits

Neuromorphic
Electronics @ BME

Ultrafast VO, oscillator circuit

Pollner et el., VO2 oscillator circuits optimized for ultrafast,
100 MHz-range operation, Adv. Electron. Mater. 2025, e00433
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Neural circuit with a synapse an a
neuron type memristor
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D. Molnar et al., Neural information processing and
time-series prediction with only two dynamical
memristors, Adv. Electron. Mater. 2025, e00353
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Artificial hearing
with a memristive e
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T. N. Torok et al., Memristor-Driven Spike Encoding for Fully Implantable
Cochlear Implants, arXiv:2509.26582
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